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ABSTRACT

A preprocessor is designed to extract a set of features

that enhance natural clustering by removing extraneous

information. The design removes time shift and scale

dependence by taking advantage of' invariant properties of aI

Fourier transform followed by a Mellin transform. The

preprocessor is realized using an FYT and a Mellin

transform with a conventional error correction term. The

error term proves to be indeterminate, but the error's

bound is identified as the envelope for Vellin correction

terms. Properties of the Mellin transform are employed to

modify the signal so that the error correcting Is no longer

required. The resulting algorithms are tested with

variously scaled Inputs for which closed form solutions are

kcnown. With a verified modification In place, the

preprocessor produces features that are Invariant to

shifting and scaling, while retaining enough Information to

classify canonic shapes. A method of improving performance

Is introduced.
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I. INTRODUCTION AND BACKGROUND

Pattern classification is the assignment of a physical

object or event to one of several prespecified catagories

and is the result of an incomplete theory of perception.

Although many transducers are available for converting

ligbt, sound, temperature, reflected radar signals, etc.,

to electrical signals, the ability of machines to perceive

cr to recognize their environment remains very limited. In

the structured world of communcations engineering, signals

are designed to be detectable and differentiable. A mucb

more difficult problem presents itself when sensing an

environment through a transducer and recognizing or even

classifying the elements of that environment on the sensed

characteristics of the transducer's electrical output.

Pattern recognition can be considered a complex

communications problem (for example, attempting to teach a

machine to decode signals encoded by nature). It is

possible to alter the transducer's output to facilitate

object classification, but determining how to alter that

output is not a sifrple task. The main elememts of a

classification system is shown in figure 1 [i]. The

transducer senses, actively or passively, a set of

characteristics belonging to the object. These

characteristics can never be a complete description of an
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object, but represent, hopefully, enough information to

classify the object as belonging to one of a number of

classes. For instance, temperature is a characteristic of

the object and a class, but this feature is of little value

unless it differs in sore way from objects belonging to

other classes, while the set mist include characteristics

that are common among that class. The preprocessor (or

feature extractor) aims to reduce the data by measuring or

quantifying certain properties that distinguish the sensed

object as belonging to one class and not to others. This

can be done by discerning key features or using the imput

to generate another set of features optimized by some rule.

The values of each of these features is then passed to the

classifier, which evaluates these features to assign the

object to a class.

With varied success, machine pattern classification has

been applied to a large range of problems/disciplines.

Fields where it is particularly common include optical

imagery, acoustic signal processing, radiology, radio

astronomy, and electronic warfare, to name a few. Work in

many of these fields was reviewed during the development of

this thesis and the results derived and demonstrated here

may, in turn, be applicable to the field in general. This

effort has been directed toward designing a preprocessor to

produce a set of features that are Invariant to information

10



known to be superfluous to classification, but that retain

enough information to classify an object. The object has

been sensed by a transducer and has been represented as an

empirically derived, univariate tirre series. Such a series

would be the form of data available from range only radar

return which is specificallj what the preprocessor is

designed to handle. Returning to figure 1, the object has

an infinite set of characteristics (here portrayed as an

infinite series of discrete values). The

transducer/receiver has collected some characteristics of

the target objective in the presence of noise. This

information is relayed as a set of discrete samples (hi)

from a band limited signal. The preprocessor is designed to

determine and code revelent information (Hj) for the

classifier. If this task was done well, classification

becomes a trivial problem. On the other band, if the

classifier becomes ideal (capable of resolving an infinite

number of characteristics in noise) the preprocessor design

begins to look like a wire. The distinction between the

preprocessor and the classifier is arbitrary from an

analytical point of view. When designing a classification

system functionally, a difference is enforced. The

classifier has little concern for how the features are

developed, but seeks to efficiently use those provided to

guess the class of the target object. The preprocessor is

11



problem dependent, needing to produce an optimral set of

features, Ej, from the sensed data hi.

A. FEATURE EXTRACTION

For the purposes of this paper, two generic approaches

to feature extraction are defined. The first, a

classification approach, was described above. The second, a

descriptive approach, tries to define the object in terms

of the otjects' structural features. This system might

recognize a car, for example, by breaking up the visual

picture Into canonic shapes, and comparing this to

previously specif'ied canonic class models. The perceived

structure of the physical object Is maintained and should

reflect the structure of' the object itself'. This approach

could be robust to temporary changes In the object itself.

In the car example, knowing that at one end of the car the

trunk can be opened or closed allows the device to take

this factor Into account. Another Important advantage to

descriptive techniques is that the class characteristics

may be entered or specified without collecting actual

transducer generated data to train the machine.

Unfortunately, the problem of' designing a machine to

analyse a visual scene to produce a structural description

has proved to be quite difficult. Object description from a

univariate time series is even more difficult, and If the

12



radiation sensed by the transducer is niot from the visual

spectrum, the task rapidly approaches the impossible. For

these reasons the approach taken was the classification

approach (to reduce the signal to a set of orthogonal

features that do not uniquely reflect the structure of the

object, but do retain sufficient information to classify

the object).

This paper excludes a detailed description of the

transducer specif ication. The problem of the classifier

itself is viewed as one of partitioning the feature space

(HP) Into regions; one region for each category. Ideally.

this partitioning should be arranged so that none of the

decisions are ever wrong. Wihen this cannot be realized, at

least the probability of error should be minimized or the

average cost of errors minimized. The problem is one within

statistical decision theory. Knowledge of the object

classes (the transducer and the classifier) are required to

design the preprocessor, which is the topic of this thesis.

The preprocessor designed and built here generates features

from a range only radar video signal. These features are

used by a general Bayesian learning classifier. The

supervised learning general Bayesian classifier approaches

the problem by taking a series of Incoming sets of features

labeled as to their class. From the data, an a posteriori

density Is computed. Each successive set of training data

13



i s used t o ref ine the densities' statistics. 'dhen the

classifier has been trained on N classes, the features are

modified to separate the class volumres in an optimral way

and to reduce the numrber of features to one less than the

number of possible classes. The feature vectors of class

mrembers are clustered about a simplex point and likely

boundaries are set up allowing classification of the object

as belonging to one of the classes, or of an unkown class.

An N simplex is a collection of' N points In (N-1) space

where the distance between any two of the points is equal

to the distance between any other two. Thus a three class

probleir transformed into a three s impl ex In a two

dimensional plane produces clustering of the three class's

about the vertices of an equilateral triangle. The simplex

coordinates are the reduced feature vectors, generalized

from the training data. In a controlled, simple problem the

classifier works well, but when encountering real problems

one class's feature space will intertwine another's, making

it much more difficult to obtain separation In a meaningful

way. The goal of the preprocessor is to present key

features that determine class for subsequent optimization

by the classifier.

14



B. FOURIIR - MELLIN PREPROCESSING

Common to all univariate, time series classification

problems are several variables that interfere with the

recognition process. Assuming discrete data processing is

used, these are addressed in the following order;

windowing, framing, scaling, sampling rate, quantization

noise, and sufficient Information. For real processing, the

irput waveform is not sampled for all time. It is sampled

for a period of time. This windowing of the data corrupts

the resulting spectrum In two ways (2). First It introduces

a periodicity (the Inverse of the window length) and

resulting aliasing to the otherwise infinite spectrumr, and

further distorts the spectrum by a convolution with the

spectrum of the window itself. 3oth of these effects will

color all of the data in the same way and so can be

accounted for by deterministic methods.' Framing can be

considered characteristic of poor synchronization, whereby

the pattern of concern Is not position stable with repect

to the window as shown in figure 2a. It seems that even in

human optical recognition, the eye tends to center the

pattern prior to recognition, unless trained otherwise.

Scaling is that property whereby the object field may vary

in scale or aspect angle, In one dimension or several

dimensions as in figure 2b. Before the analog signal Is

sampled, it must be fed through a sharp low pass filter,

15
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because no higher frequency noise can be present without

being folded onto the valid data. Quantization noise, due

to the requirement to round off each sample to some

discrete level, is treated the samre as round off error in

num-erical processing [3]. In all of these problems

discussed to this point, the effect of this processing is

to m~ask the actual feature vectors, mraking the

classification system less sensitive to valid pattern

characteristics. In all recognition problems, it is assumed

that there is sufficient information present for a pattern

to be detected and identified by the system. This means

that there is sufficient variability between the classes,

but sufficient similarity between those patterns of a

single class to classify each pattern in terms of those

classes.

A verifiable goal of this preprocessor Is to produce a

set of features that are Invariant to shifting and scaling

changes. An approach, figure 3, has been proposed and used

[4-101 . The preprocessor consists of putting the sampled

data successively through two transforms, a fast Fourier

transform and a discrete Mellin transform. Integral

transforms, the Fourier and Mellin included, develop

naturally from the solution of simple problems in potential
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theory (11-13]. The Fourier integral transform of the

waveform h(t),

where K=exp[-24?,ft], is a principle analytical tool in such

diverse fields as linear systems, optics, probability

theory, quantum physics, and signal analysis [13]. Its

purpose in the preprocessor is twofold, but relies on a

single characteristic. The magnitude of the Fourier

transform is invariant to shifting, h(t-a).

e #

/H,)/ = /(2)

This characteristic removes the effects of framing

inaccuracies, and also permits the averaging of successive

looks or pulses of data to improve feature resolution, but

removes much of the information about a signal's structure

as discussed later. A discrete Fourier transform,

.ACt) -0 -tvv,, " ,,- 0, 1, j , .... A -1

H(() "' H(',,/) = , I , . (3)

AE-I

H(,,,) /- ) (4)

has an equivalent identity, but it is only exact for shifts

of integer values.

19



I .. I H<-,-J i j 5

Shifts of other than integer values result in errors that

depend not only on the shift, but on qualities of the

sampled waveform itself, h(t).

The Mellin transform is an integral transform with the

kernel, K.

K . (6)

(7)

is the Mellin transform with respect to the complex

parameter s=r-j21?m. Several simple substitutions relate

this to more common analytical tools. Exponentially warping

t=exp[xj changes the appearance of the integral to what is

often called a double sided Laplace transform [14]

, C S .M i (8) 

The transform is invariant to t domain scaling when taken

with respect to the imaginary part alone,

6%) e- (9)

20



Equation (9) is recognized as the Fourier intergral of an

exponentially distorted waveform h'(x). The modulus of the

expression on the right is the magnitude of the Fourier

transform of the exponentially distorted time function. The

property to be exploited in a Fourier-Mellin (FM)

preprocessor is that the rodulus of the transform in s, is

Invariant to t-scaling. Given a time waveform h(t), its

Vellin transform H(s) is given as equation (7). Scaling the

entire t-domain by k,

7lA*/A4 j f(t /A~)t-i*(0

Letting r=t/k, and remembering that s is imaginery,

-A (s)/ I c

Much effort and detail is spent implemventing equation (7)

digitally in Chapters II and III. The rest of this chapter

is devoted to providing some required background on the

discrete versions of the Fourier transform and some

properties upon which the FM preprocessor depends. The

treatment here is brief, being mainly a review of basic FIT

concepts and as such may be skipped without loss of

content.

A discrete Fourier transform is not computationally

efficient and so leads to impractically long processing

21



times. The fast Fourier transform (FFT) efficiently

computes the discrete transform and is used in the

preprocessors built for this thesis. Other properities of

the FFT should be presented before getting into the

detailed design of the preprocessor. The first and last are

concerned with symmetry. If h(m) is real, as in the case of

the sampled data, then the frequency spectrum of that data

is even, !Ee(n)!=!He(-n)!. H(n) has a real part and an

imaginary part, Re(n) and Im(n), while h(m) has an even

he(i)=he(-m), and an odd ho(m)=-ho(-rr) part.

,Me- I 4

U-'

N (12)

The odd part of h(n) times the cosine kernel summation, and

the even part of h(n) times the sine kernel summation are

both zero. H(n) can now be seen to have an even and odd

part. Taking the magnitude of an odd function makes it

even, proving that the Fourier transform of a real series

is a spectrum whose magnitude is symmetric about f=O. This

is of course true for both the integral and discrete

Fourier transforms. The second line of symietry is an

effect of discretizing the signal and its spectrum for a

discrete transform as evinced by its theoretical

development. Before proceeding though, the convolution

theorem is required.

22



The convolution of the two functions h(t) and g(t) is

defined as the familiar integral,

4W
-a, ~ ;(13)

The relationship between convolution and the Fourier

integral is very important to modern analysis and

contributes to making the Fourier transform a key analytic

tool. The convolution theorem states that if h(t) has a

Fourier transform F(f) and g(t) has the Fourier transform

G(f), then h(t)*g(t) has the Fourier transform H(f)G(f).

(t) - 4(e) *; (t)

.t] = H) (14)

Proving this, the Fourier integral is used directly on the

convolution integral.

2*L -- (15)

From the shifting theorem already presented,

-2
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And finally,

It can be shown similarly that,

,C, = W (18)

Clearly, convolution in one domain is simple multiplication

in the other domain. Although not needed for the pending

development of the discrete Fourier transform, another

important relationship, known as the correlation theorem,

can be appropriately dealt with here. The correlation

integral,

j(*) -01 (19)

has an operation with which it forms a Fourier pair as did

the convolution-multiplication operations. This theorem can

be established as before,

2(24)
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The term in brackets is the complex conjugate of H(f) and

is denoted by B*(f) in the final form of the theorem below.

(21)

We will now continue on to the discrete Fourier

transform starting with a continuous waveforrr h(t). The

waveform is sampled or multiplied by a string of delta

functions, s(t).

. ¢:;¢ 7 1 c_ ,,.4) r( --. a (22)

where capital delta is the sampling interval. The infinite

sum is not realized and must be windowed, in this example,

by w(t)=1 for 0 At S(M-1)4 and zero elsewhere. So that

now,

¢.= ' ..(c,) IC -v, 4) (23)

Recalling the convolution theorem, the multiplications in

the time domain correspond to convolutions in the frequency

domain with the following results. H(f) is convolved with

the window functions' spectrum and will have the apparent

effect of introducing ripples because of the window's

significant sidelobes. The rippling may be minimized by

choosing a window function with small sidelobes at the cost

of other, perhaps more acceptable, spectral degradation.

25
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H(f) is convolved with the sampling function and

S(f)=I(f-n/4 ) has made the spectrum periodic with respect

to the interval F=1/4d . The spectrum coming from a real

waveform is first symmetric about f=O as shown before. Now

because of its periodocity the spectrum is symmetric also

about f=F/2 (the Nyquist or folding frequency). One final

step remains. The Fourier spectrum is also taken at

discrete points 1/T apart. The result in the time domain is

the convolution of the sampled, windowed signal with

I(t-nT), which is a periodic signal with T as its period.

The FFT algorithm used in the preprocessors developed in

this thesis uses a Cooly-Tukey, base two algorithm [15].

This is documented where it is used in programs included in

the Appendices. The algorithm uses N samples where N is two

to an integer power. In the transformed domain, due to the

symmetry shown above, there are N coefficients (only N/2 of

which are unique as shown in figure 4). The original

waveform must be band limited prior to sampling to minimize

aliasing. The resulting frequency spectrum should approach

zero at the folding frequency where up to half of the power

can be aliasing noise.

In the following two chapters, several different

preprocessing algorithms are developed and their

performance compared with canonic inputs. In Chapter IV the

2e



probler of ship identification with range only radar is

discussed briefly and one preprocessor is applied to

several ship profiles. In the fifth and final chapter,

conclusions are drawn from the work done here and follow-on

efforts are recommended.
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II. DIGITAL MILLIN TRANSFORr

3T EXPONENTIAL WAPPING

In the first chapter, the modulus of the Mellin

transform was shown to be invariant to scaling. A detailed

examination of the mechanics involved suggests an

implementation that is widely used. The Mellin transform of

a t-domain function h(t) is given in equations (7) and

(9 ").

(7)

NCS 4 e 4) e4('

Delta has been added, corresponding to the sample interval

in the t-domain. Again it Is noted that (9') is a Fourier

transform, where s=-j21'm. Solving the integral for the

effect of a t-scaling by the factor k,

X H(S) (24)

Clearly, in the Fourier integral, the scaling factor k has

become a shift for which the modulus of the transform is

Invariant. The exponential warp alone has transformed the

scale factor into a shift. A prerequisite is that the

t-dowain signal has no shift. If there were a shift, it

does not transform to a simple factor or shift in the

29



Mellin domain and so cannot subsequently be removed by

taking the magnitude of a Fourier transform.

Implementation of a discrete Mellin transform is as

difficult as it is with the Laplace transform [13]. Once

transformed, characteristics in the new spectrum are

difficult to relate to the original signal characteristics.

One hypothesis relating the two domains is generated by

comparison to the Fourier transform. The power spectrum

associated with the Fourier transform can be used tc detect

periodicities in the physical function, since the wave

numbers at which sharp peaks of the spectrum occur give the

wavelength of such periodicities. By analogy, the positions

of the peaks in the spectrum associated with the Mellin

transform are said to give the magnification or compression

which will produce features in the physical domain.

Further, this stretching and compressing is identified as

periodic in nature [211. This seems unlikely because the

Mellin is invariant to magnification/compression and does

not behave well (a scale factor that is a function of t and

k(t) as seen in (24). The Fourier spectrum models the

original signal by a set of weighted sinusoids of varying

frequencies, and therefore, naturally display periodicity

and is invariant to shift. The Mellin is also a weighted

30



sum o f sinusoids, but whose magnitudes are inversely

weighted by t.

14( s)J e (25)

Values for h(t) for 0 t 1 are far more important to the

sum than those beyond that point. This characteristic

contributes to the difficulty of realizing discrete Laplace

and Mellin transforms and is a major topic covered in this

chapter.

The numerical approximation of the Fourier-Mellin (F)

transformation by exponential warping is functionally

diagrammed in figure 5. A FORTRAN program using the

algorithm described in this chapter is included in Appendix

A. Referring to figure 5, the input samples are from a

pulse whose duration is finite and less than that of the

sample window. For this case, no spectral distortion Is

experienced by filling zeros behind the sampled data. The

only effect of the zero filling is to add spectral

resolution in the frequency domain. Once through the first

FFT block, and the magnitude taken, Ff is symmetric about

zero and at the folding frequency. Thus, for N time samples

and filled zeros, there will be N/2 unique spectral

coefficients. This unique spectrum is interpolated,

resarpled as a warped signal and fed to the final FIT

block. A correction is added, and the modulus is taken. The
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resulting FM features are invariant to shifting and scaling

in the time domain. The FFT block was covered in sufficient

detail in the preceding chapter. Some effort will be spent

in discussing the warping itself and the need for, and the

development of, a zero point correction.

A. ALGORITHM D!VELOPMENT

This section uses its own notation to address the

requisite exponential sampling. The series to be

transformed is h(f). Its Mellin transform is H(m) where ir

is the Mellin frequency in s=-J21ir. The transform is,

,,.,>.(26)

Letting f=Fexp[x) as before, where F is added corresponding

to the sample interval

The need is to evaluate M equally spaced samples in x, at

0,, (M-) X (28)

while the data consists of N equally spaced samples in f,

0,(M F, , N-)F (29)

Assuming that P is a small enough interval to properly

characterize h(f), it is sometimes advisable [9,101 to
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choose the exponential sampling interval (X) such that the

largest intersample spacing in h(Fexp[xl) is equal to kF

where k=1. The other set of conditions used to uniquely

specify the new samples are that ffF and x=O will be the

lowest lrhit for interpolation, while (N-1)F and (f-l)X are

equated as the upper limit. The firsc requirement

constrains the choice of M by

S e)x -Z)X  (30)

feeting the second condition, the end points In each

sampled series are equated yielding,

(O- = e CM..)X (31)

Substituting (31) into (30) while applying the exponential

series approximation gives,

XUL " 4 (32)

One more substitution, (32) back into (31) sets up the

desired result where M is now specified to exponentially

sample from ffF to f=(N-1)F with kF being the largest

interval between samples.

M N .,- Z CM-I) (33)
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As N gets larger, M explodes. If N16f then M=~41, if N=32

then M=106, if N=64 then M=261, and so on. This strict

requirement can be comrpromrised depending upon the

application. The other extreme [181 is the criterion that

requires the smallest interval between samples to equal the

interval between uniformly spaced Nyquist sampling, with

the intervals increasing exponentially thereafter. The

specification permits analyzing frequencies approachling the

largest which can be analyzed with uniform spacing. This

greatly reduces the number of samples and decreases the

required processing time, but is limited in application.

Two factors mitigate the stringent requirements Imposed by

(33) where kr=1. First, using N unique, uniform samples

yields N/2 unique, 'nniform samples In the FFT domain. A

related consideration Is that the values of the spectral

components approach zero at the folding frequency because

the original signal has been band limited and some over

sampling is normally recommended. Secondly, the inverse f

weighting apparent in equation (25)

attaches a decreased importance to h(f) near the folding

frequency fn. These two effects combine to permit a much

lower sampling rate once the modulus of the FFT has been

taken. In spite of this, the stiffer rule (33) is used for
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this work to generate the best FM domain possible. Whatever

rule is used, once the exponential sample points have oeen

computed for an FM preprocessor, they needn't be

recomputed, but can be stored for rapid access during the

interpolation. Some interpolation must be performed to

approximate the spectral values of the new sample points.

Third or even forth order Lagrange polynomials have been

recommended and used for this purpose with apparent

success [9,10,19]. The advantage of the Lagrange technique

is that its notation is particularly compact, consisting of

simple summations and repeated products that lend

themselves to digital realization. Unfortunately, for the

data sets used in this thesis, the third order algorithm

was observed to behave poorly, adding a ripple in regions

of rapidly changing slope. That this might be the case was

suggested by the advice that Lagrange is very good near the

central data point when the order of the polynomial is

known to be the same as the order of the approximation,

otherwise it is test left alone (20,21]. In its place, a

second order polynomial was used to interpolate the warped

samples with results that were nearly indistinguishable

from the actual waveform, as seen later in figure 8.
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3. ZEPO POINT CORRECTION

Another problem becomes apparent when the Mellin

transform of h(f) is recalled,

H cs )fu~e~?t (34)

where s=-j20?m. The exponentially sampled waveform

described above is applied to an FFT block. As f approaches

the folding frequency, h(f) tends to zero. Unfortunately,

as f approaches zero, the value of h(f) is not zero. In

fact it is frequently rather high. To make matters even

more interesting, the left integral in equation (34)

clearly shows that the closer to zero f gets, the more

important h(f) becomes to the integral. Several solutions

to this problem are considered below.

One practical, simple apprcach is to set the DC (le,

f-0) term of the FFT to zero. The effect Is nothing more

than removing a DC level back in the signal domain, but

Mellin transformation into the FM domain leaves the

spectrum dependent upon the scale factor k [22]. Setting

the f=O coefficient to zero corresponds to setting h(f) to-

zero for 0 i, where the unity upper limit is chosen
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without loss of generality. The resulting transform of a

scaled signal domain h(f/k) is

which is obviously dependent upon k. The closer k is to

unity, the smaller the effect. By increasing the f spectral

resolution, the error can be reduced. The error may be

insignificant for many applications [£5-8], but the

technique should be used with care.

The first solution has highlighted the need for a zero

point correction. Another common solution [10-11 is

developed by breaking the integral up as before. Again

using unity as the upper limit of the left integral while

remaining general in application,

Two assumptions are made to get the correction term. First,

that h(f) remains a constant h(e) over the interval of f

between zero and one. Second, and not as easily accepted,

OA.

Equation (37) pretty well shows why this assumption is

suspect, but playing along for the momment, the question is

38



reserved for a later detailed look. Accepting the

assumption, the correction factor becomes,

___s_ = 0) (38)

Because H(s) is a complex function, Z(s) rust be applied

(added to the imaginary part of the succeeding Fourier

transform) before the fagnitude is take to remove scaling

dependence. This correction is specifically derived for use

with a continuous Fourier transform such as the optical

Fourier in Imaging systems with the added stipulation that

h(f) be nearly constant over the range <f<k where k is the

largest scale factor expected. If an FFT is employed to

trake this final transform, another correction should be

applied as shown by Zwicke and Kiss [II] below. This

correction factor differs from the first due to an

invariant property of the FFT. The FFT of two unit step

functions that vary only in scale are balanced.

where m and p are arbitrary integers greater the zero and

less that M. Successive FFT coefficients are surred, and

the average value of the contributing terms taken resulting

in,

9(40)

39



This is then multiplied by h(O) to arrive at the FFT Mellin

correction factor.

Z,(A) .A.) (i- 'I .,-4/ (41)

When k/M is small the imaginary term dominates and the

correction factor aprroaches that used in the continuous

case (38). Most of the work done for the thesis on the

exponential algorithm was done using the inappropriate zero

point correction (38). Since its discovery was coincident

with that of more powerful methods discussed in Chapter

III, little data was taken using (41).

To bound the error involed, an acceptable h(t) is

defined, windowed and transformed using the Mellin

integral. The window limit is then allowed to grow

unbounded and the resulting expressions are Interpreted as

the error. It's been assumed that for O<t<l, h(t)=h(O).

Since the error resulting from the assumption in equation

(37) arises from this interval alone, t>1 is ignored for

the time being. Warping the signal as before h(x)=h(O) for

all x< and h(x)=O for all t>. Evaluating the integral to

a finite window width (T),

T-4~a (o C i -02 41-rl

=LT () :,.( ) ¢ (42)
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The term in brackets is the magnitude of the contribution

from the region of integration, -T<x<O. Note that it

involves a sin()/() term. The effect is to add a peak of

(T)h(0) at the origin. The size of the peak depends

directly on the window border T. Letting T approach

infinity raises the spike at uh =0, with lesser peaks at

L.)=(2i+1)1r/T, where i is an integer. Each of the subpeaks

has a magnitude of 2h(O)T/((2i+i)1r). Substituting u into

the second relation yields the envelope (in brackets) and

phase as T tends to infinity.

7 -)

The error bound in brackets, does not depend on the sample

rate, or the size of the window. Any approximation

approaching zero will have the same bound. Although the

magnitude of the error is in a convenient form, the phase

is indeterminate. For the correction to be applied, the

complex addition must occur prior to the modulus being

taken. This cannot be done, leaving the error uncorrected.

but is bounded by 2h(O)/O for continuous and aperiodic

discrete Fourier transforms. For the FFT, equation (43)

does not bound the error. The sum of 1/ does not converge

as I tends to infinity. At any point on the FFT this sum is

present due to the apparent folding. The error itself is

not unbounded because phase differences in the sum of the
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errors at any point iray result In the envelopes adding

destructively, reducing the actual error. Adding the

envelopes is an unrealistic, worse case approach. The FFT

correction (41), can not be compared to (43) for these

reasons. The other error correction, using the assumption

in equation (37), can be compared. The first, setting h()

to zero, or just plan bnorine the r<t<l Interval have the

error function bound in equation (43). Although only

differring by a factor of two in magnitude, the constant

phase is arbitrary, and equivalent to setting T=O; that is,

assuming h(0)=0 over 2<t<l. This was the very problem the

correction was developed to remedy, but is without effect.

Equation (41), the correction for the FFT is not completely

accepted by this author, albeit no real empirical evidence

have served to verify or dispute the claim. Suspicions are

raised on two aspects. The indeterminate phase of the error

(43) in the continuous case arises naturally from

approaching the t=O limit with the Mellin in tegral. This

quality is conspicuous by its absence in the FFT error

correction. The FFT error correction is computed by summing

the FFT coefficients in the complex plane. The average

position of the resulting polynomial is the error

correction term. Eowever, the FFT coefficients of a finite

duration signal are the values of the signal, evaluated at

M evenly spaced points about the unit circle [3,23]. If
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the sequence is a constant, the average value is the origin

of the complex plane.

The zero point corrections for the Mellin transform are

unbounded at 0.=0. More time could have been spent

determining the best applied correction for the specifiC

case at hand, but direct methods are developed in the next

chapter that obviate the need to employ the correction at

all.

C. TESTS AND RESULTS

It is worth admitting at this point that the results

using the exponentially warped algorithm to achieve a

discrete Mellin transform have not been good. More recently

developed techniques in Chapter III greatly surpass the

results reported in this section. Although much of the

theory used to improve performance in the following

chapters could have been used here, this was a preliminary

attempt that was later abandoned. The FM processor

described in the previous section was built using FORTRAN.

Appendix A is the documented program. This section will

review the processing with actual plots of the signatures

at different stages, discuss the required tests, introduce

the testing approach, and finally intepret the results. The

functional block diagram of the preprocessor, figure 5, is
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near the beginning of this chapter and could be profitably

reviewed. Figures 6 through 9 represent the step by stepI

viev of the signal processing, where the signal, a test

shape, is shown in figure C. The waveform., appears as an

envelope, and is drawn with vertical lines Indicating the

sampled series. Figure 7 is a picture of the FYT, in its

samipled version showing Its symnmetries. Figure S Is a very

close approximation to the continuous periodic transform

achieved by filling zeros to obtain the requisite spec-tral

resolution. A +"on the transform plot indicates an

exponential sample point Interpolated from the sixteen

unique points in figure 7. The warped samples are sent

through the IFT block once more with the result shown as

figure 9. Heavy spectral coloring by the h(o)/Lob corr'ection

factor Is evident. Only the first half of the spectrumr,

from zero to the folding frequency, is valid.

Complete scale Invariance was never realized although

its effect was greatly reduced. All the testing done on the

exponential algorithm was an attempt at achieving and

verifying shift and scale Invariance. Much effort was spent

structuring the tests to avoid the effects of processing

noise so the actual algorithmic characteristics could be

determined. Along the way, requirements arose to select a

suitable interpolation polynomial, an optimal zero point

correction and other system Improvements. In all cases, the
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test procedure was to first select canonic test shapes.

Squares and triangles were most frequently used, being

shifted, scaled and combined to determine preprocessor

characteristics. Scaling was most frequently by a factor of

two or less. This corresponds to an aspect angle change of

60 degrees from the unscaled case. For many tests, care was

specifically taken to exactly scale a sampled series

instead of the waveform envelope. The variation in input

signal when this isn't done is evident when considering

figure 10. For the envelope shown, the sampled series

cannot reconstruct the same signal, and may result in

feature space variation. Two feature qualities were

monitored in each test to determine preprocessor

performance; insensitivity to shifting and scaling, and the

ability to differentiate between canonic classes. These

qualities were measured by visual comparison of the FM

features, by computing the correlation coeffiecients and

the mean squared error between the feature sets of

differently scaled similar test shapes, and by computing

the distribution of the error over the feature space. The

latter test was an attempt to locate feature regions of

class commonality, and regions of distinction between

canonic classes. This approach allowed macroscopic and

microscopic examination under changes of scale, shift and

shape. The clustering and separation qualities are data
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dependent. Since no ship radar video data was used, all

observations were with respect to canonic classes. No

strong groupings were detected.

As alluded to earlier, the results for the exponential

algorithm were less than satisfactory. Test shapes were

carefully designed to mrinimrize sampling effects, and to

ensure low side lobes in the frequency domain. Many tests

were conducted using each of the zero point correction

methods with varied shapes, sample rates, and spectral

resolutions. Classification on the basis of signal shape

was very poor. The strongest correlation was between shapes

of common duration. Table 1 shows a typical result of

comparing a rectangular shape and a raised ramp. The

scaling in each case was by 2 (e0 degrees). Equation (36),

Z=h(0)/uZ was used, but the others of±'erred little

improvement. Consistently, the strongest similarity was

shown between shapes that had the samre sample length, vice

shape.

51



TABL! 1

Canonic Shape Fourier - Mellin

Feature Comparisons

a. Peak Correlation Values

RICT RECT/2 RAMP RAMP/2

RECT 1.00 0.7? 0.98 0.76

RICT/2 - 1.00 0.87 1.00

RAMP - - 1.00 0.86

RAMP/2 - - - 1.00

b. Squared difference between features.

RECT RECT/2 RAM1P RAMP/2

RECT .000 .032 .019 .032

RECT/2 - .000 .032 .019

RAMP - - .000 .032

RAMP/2 - - - . 000
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III. DIRECT MELLIN TRANSFORMS

The last chapter developed a method of obtaining the

Mellin transform by exponentially warping the signal prior

to using an FFT block. This technique is referred to as the

fast Mellin transform (FMT). Although the promise of scale

invariant features is attractive, some of the problems

encountered that make the FMT unattractive are reviewed

here. The required sample rate varies with respect to the

data, making general applications difficult. The tendency

is to use more samples than required, whi-h quickly becomes

costly in an exponential sampling scheme. The need to

exponentially warp (to interpolate) a set of new samples,

is expensive in time required. For true scale invariance, a

correction factor is required but because of the integral's

unbounded nature at zero this correction factor Is

indeterminant. Several correction methods have been

employed, but they depend on unspecified data

characteristi's. These effects combine to rake the actual

performance of the algorithm poor. Although scaling effects

are mitigated, they remain an artifact, which is disturbing

to classification attempts. This chapter outlines the

effort to remove these limitations. Some useful Mellin

properties are developed, and then applied to establish
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several Direct Mellin Transforms (rMTs) which were built,

and their performance compared.

A. SOME USEFUL PROPERTIES

Some general observations are made here about the Mellin

transforms, and are followed by some specific relationships

which were derived and applied. A property of the Mellin

s-domain is that it is unaffected by scaling changes in the

original x-domain. Figure 11a is a test shape in the

x-domain. Two features are identified according to their

amplitudes A and B, at x=a and x=b respectively. The ratio

of a/b equals c. To be simply scaled by k, b(x/k) must

remain the same in all aspects except that the distance

between features has been changed according to the scale

factor k. Figure 11b shows the scaled domain. Features A

and B are again identified at their scaled positions ka and

kb. The signal property maintained by scaling is relative

positional integrity, that is, ka/kb equals c as before.

The positional integrity of the features, the ratio of

their distance from the origin, to that of another's is

unchanged. Restated, an operation O[h(x)] in the x-domain,

will leave the s-domain modulus invariant to simple scaling

by k if
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Note that the entire domain is scaled, so no unscaled shift

in the domain can be permitted as already discussed. In the

Mellin s-domain, any simple scaling in the x-domain results

in a phase distortion (the modulus is invariant to k).

Manipulations in the s-domain will leave that domain

invariant to k, as long as the modulus is modified by a

multiplicative factor of constant phase. That is, if jG(s);

is an arbitrary function of s (except that It does not

depend on k) and !Mh(x/k)]H=EH(s): is also invariant to k,

then their product is Invariant to k and the x-domain

remains simply scaled. For instance, in the x-domain the

operator O[h(x)]=x(h(x)), does not meet condition (44).

So the Mellin transform's modulus of xh(x/k) cannot be

invariant to k.

In Chapter II, a error was apparent because h(x) was not

equal to zero for x=O. If h(x) could be modified with an

operation that met the condition of equation (44) and

56



always produced a series that was zero at x=O a general

approach can be developed. Consider two operators,

o k (,xA)j1 -Air4(~4> 4%
(46)

Equation (46) will produce an acceptable f(x) as df/dx=O at

1=0. Equation (47) will always produce the required

condition. To see the frequency domain equivalents, we rust

assuire that the Mellin integral exists. Integrating by

parts,

II

The result in the frequency domain is consistant with the

conditions stated above. The limit of h(x) as x goes to

zero or to infinity must be zero if equation (48) is to be
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true. Similarly, under the same conditions, it can be shown

tha t

It 94,~ ~ ~ /~ Ji (49)

Equations (48) and (49) clearly do not apply where h(O) is

not equal to zero. However, by using the x(d(h(x))/dx)

modifying operation of (47), a series can always be zero at

x-0. The function h(x) is further constrained by the fact

that it must fall off faster than i/x. This assumption must

be valid and the modifying operator must be applied in the

x-domain for the Mellin integral to exist in general. A

Mellin transform of a function, after having a modifier

applied, will be called a modified Mellin transform.

S" d -K (50)

The integral is close to a form which is realizable, except

for the upper limit. For a finite sampled series, h(n) will

be assumed zero outside of the interval O!n<N. This

truncation effects the transform of an otherwise infinite

series. In this application the Mellin is applied to an FFT

frequency spectrum. The truncation In the frequency domain

is due to band limiting the signal prior to sarpling.

Scaling in the time domain will not result in simple

scaling, but will add a dependence on the scale factor k

that can not be removed by the transform. An approach by
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Prost and Goutte is used to predict the size of the error

(24,25]. First a suitable function will be selected and a

relative error of truncation ' RET) determrined and applied

to two scalings. The relative difference of the feature

space is found and identified as the error. Remembering

that this Is applied to a frequency spectrum, dh(f)/df is

approximated by a function of the form.

" o(51)

The modified Mellin transform of (51) over a finite

frequency range would te approximately,

(52)

The lower limit has been set in a manner to be consistant

with Plancherel's theorem. A convenient worse case

assumption is that the lower limit is essentially zero, but

this depends, in general, on F and the data itself.

Ha*(s,f) converges toward Ha(s), equation (50), in the mean

square .as F tends to infinity. The mean square error will

not provide an expression for the error that can be used to

correct for it but is useful to measure the effect of the

truncation in more general terms. A relative error of

truncation (RET) can be computed if the error is assumed to

be distributed evenly over the range from which Ha*(s,f) is
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computed. By employing Plancherel's theorem, the mean

squared values are,

0 (54)

The RET is defined and solved as,

T e P  " 0 (55)

But the limit F depends not only on the pass band F, but on

the scaling in the f-domain. A relative error (RE) between

a truncated spectrum and a scaled and truncated signal

would be more complex, but worth the effort.

ZF ~ ~ *F(Z*t1)A/: 11) e\X''
-( (56)

where 0<k<1. Two observations should be made here. First,

the relative error of truncation (55) and the relative

error or difference between two truncated spectrums scaled

differently (56) both depend on F. F depends on the cut off

frequency of the low pass filter prior to any sampling. It

is often chosen to mrintrize aliasing depending upon the



limitations of the sampling circuit. Second, RE depends on

k as well. The importdnce of scaling differences to this

data type can be readily seen. If equations (55) and (56)

are valid, and if the range of k can be bounded (a design

specification) F can be chosen to realize a stated RE. Or

If F is fixed and k bounded, the RE may be determined for

evaluation. If the data type is not appropriate, a more

representative function mray be determined and used in place

of equation (51) to attain better expressions for RET and

R1.

B. ALGORITHM DEVELOPMENT

Part A above provided some background for making the

Direct Mellin Transforms (DMTs) in this section. In this

presentation the justification is given with the

application first. However, chronologically the neat

package presented above was preceded by extensive

evaluation of empirical results, not vise versa. Appendix 3

documrents the FORTRAN implementation of all the algorithms

developed In parts 1 and.2 below. Figure 12 is a functional

block diagram of a generalized TM preprocessor using a DMT

to show the simplicity with which it can be aDplied, as

opposed to the FMT covered in the second chapter, figure 5.
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1. First Difference Approximations

Although developed through a different rationale,

this first algorithm was developed by Zwicke and Kiss [11].

Starting with a sampled series hi, the series is operated

on by the modifier defined in equation (51), using the

first backward difference to approximate the derivative

with respect to x. Unit step size is assumed.

(57)

Taking the trapezoidal rule to evaluate the modified Mellin

integral (52) while recalling that h(O)=0, and h(N) is

assumed zero,

H ,l (58)

where s--j2#m/M. The complex coefficients are

(59)

They can be calculated off line and stored to produce just

the desired characteristics. The factor (2#m/M) could be

any number that produces an interesting feature. Undesired

features need not be computed (what in general was a N by M

matrix, where M is the number of Mellin transform

coefficients and N the number of x sample points). If a

relatively small number of features is required, perhaps
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the processing will be manageable. Notice that no zero

point correction is required. Cnly data changes contribute

to the transform. These observations are valid for any of

the modified Direct Mellin Transforms developed in this

section,

By using a central difference instead of the

backward difference, a simillar result is obtained.

N( 0)

Other numerical integrations may be used with improved

results, and other methods can be used to increase the

order of the approximation.

To test the algorithms, a ramp and inverse ramp were

used in a scaled and unscaled mode. The ramps and their

scalings are shown in figure 13. Figure 14 is the analytic

results of both waveforms plotted with the transform found

using equation (0). This is a dramatic improvement over

anything used with the methods discussed in the previous

chapter. The noise of the signal appears to be diverging as

frequency grows, but over the range plotted, the appearance

is that of an algorithm trying to do well.
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2. Second rifference Approximations

A second difference algorithm can be achieved by

proceeding as before. The pure scaling operator used to

prepare the signal is,

And the new algorithm is,

N-1

-... --- "Z (62)

Other second order operators have been used, and

partitioned into forward and backward difference variations

to (61), but this appears to be a basic and useful form.

The color 1/(s+l) is present to approximate the modified

Mellin of equation (60). The term (s+1) is valid assuming

that dh(x)/dx is exclusively upper bounded by ln(x)/x as it

approaches zero or infinity. For comparison, another second

difference algorithm was developed based on the modifier

(x(d/dx) (x(d/dx)h(x).

N-1

'ot (63)

This is roughly the sum of the methods defined in equations

(60) and (62) above. The assumption for deriving the color

1/s is even less restrictive than before, but the algorithm

performs poorly compared to (62). These transforms depend
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on second difference characteristics, but are modified by a

1/s term which has a stabilizing effect. This is equivalent

to a division by x and integration in the x-domain. The

order of the approximation has been increased by the

modifier. Results using equation (60) and (62) should be

alike. Figure 15 Is the results of using (62) compared to

the closed form solution to the figure 13 test shape

transforms. An improved performance over (60) Is seen over

some of the range, but a drop as frequency increases

degrades the accuracy in figure 15b.

3. Higher tifference Approximations

Higher difference approximations can be developed.

For instance, one algorithm depending upon the third

difference is,

Pi-

H - Z (64)

The erforrance of higher order algorithms becomes

increasingly suspect because of the extreme weighting they

apply to different parts of the series. Different

algorithms exist, but this weighting is always a factor. A

smoother transform is achieved, but a large error is likely

to develop due to the algorithm's dependence on higher

order derivatives and the nature of sampled data. However,
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these comments are speculative since they were not

confirmed experimentally.

4. Higher Order Integrations

Higher order Integration rules should be able to be

used with a corresponding improvement in performance. One

using the first difference with Simpson's rule was

implemented with dissappointing results. Figure 16 Is the

result of such an Implementation. The droop for the ramp

input is apparent even though not present in the

trapezoidal rule used in subsection 1 above. The higher

frequency error Is also more prevalent than before. A

program error is of course suspected, but was never found.
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IV. CLASSIFICATION PREPROCESSING

The problem of determining important signal

characterisics can be approached in at least two different

ways. First, by trying to learn what is important In human

recognition, and then trying to adapt a imachine to emulate

that behavior. Or second, by using successive transforms to

remove information known t o be superfluous to0

classification, while keeping enough information to

reliably assign an object to a class. Addressing the

former, even though it is difficult to det ermi ne specific

details, some key aspects of human visual recognition are

discernable. Chief among these is that the intensity level

of a scene, or object, does not appear to be as important

as the relative position of the edges, i.e. the shape

separating different Intensities and frequencies [25-281.

Examples in scene analysis show clearly that the edges or

shapes are far more critical to huiran recognition than the

relative power differences themselves. The invariant shapes

or angles in scene analysis find their analog In ratios

between similiar points In differently scaled time series.

Examination of many range only radar video ship signatures

has provided a basis for noting that the relative position

of time domain features remain constant over changes in

aspect angle, while the relative intensity of the features
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vary greatly as shown in figure 17. As the aspect changes,

if this set of ratios remains constant within a ship class,

then the set is identified as information worth preserving

for the classifier. Conversely, since relative intensitiy

is not a stable measure over aspect angle, or from among

different ships of one class, that information should be

intentionally removed to provide tighter natural

clustering, with the minimum number of features.

A. INFORMATION REqUIREr TO CLASSIFY

There are two preconditions that must both exist for a

set of possible input signatures to separate into distinct

classes. First, the features of a particular class must

have some common characteristic about them, and second,

this characteristic must in some way be unique with respect

to other classes. The assumption in existing radar

signature classification projects is that there is enough

information in the signatures to permit this

classification. Short of actually trying to classify with a

set of realistic signatures, the analytical determination

that sufficient information is present in a set of all

possible ship signatures is difficult to approach.

To establish how well the autonomous classifier is

performing some measure of the classiflability of the set
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received signals is desired. Failing this, some discussion

of the information capacity of the preprocessor should at

least be considered. The preprocessor produces the FFT

iagnitude of a sampled signal as the output of the first

stage. Most of the unique positional relationships of the

signal upon which human recognition apparently depend has

been destroyed. Next, the Mellin transfrom stage

effectively distorts the signal and uses the magnitude of a

second Fourier transform as the output features. Signals

reconstructed on the basis of FFT phase information alone

usually provide sufficient similarity to be associated with

the original signal, whereas reconstruction on the basis of

magnitude does not retain any significant detail except

when the signal is symmetric [29]. The data is also masked.

For most applications, the data is frequency shifted,

filtered and sampled as a baseband signal. This windowing

Irasks the magnitude characteristic and is specifically

designed into the processing. The resulting FM features are

insensitive to positional and scaling relationships that

are necessary in human visual recognition.

Analytic support is also available to quantify the

importance of relative position of events [29]. By

considering rms error (due to spectral phase and amplitude

quantization for random signals) it has been concluded that

approximately two more bits are required for the
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quantization of phase Inforration than amplitude for the

same rms error. A separate analysis applied distortion rate

theory to real-part, imraginary- part, and magnitude-phase

encoding of the DFT of random sequences. The result was

that phase required 1.4 bits rrore storage than magnitude

for a similar error (30.1 . A third approach concluded that

the Fourier phase includes 1.8 bits more information than

the magnitude [31]. This was based on analysis of image

reconstruction from kinoforms (phase-only holograms). The

fact that phase-only reconstruction preserves much ofi the

correlation between signals would suggest that the location

of events tends to be preserved. Further, it seems that

this information is lost by taking only the magnitude of

the Fourier transform. Another interesting, albeit

informal, view is apparent as one considers the phase-only

signal as a spectral whitening process.

J-L1(4] FM = / F -) , so (65)

For reconstruction by phase alone, where the magnitude is

set to one;

.7-L~tU ((lC~JLI](66)
Since the received radar signature will have an abundance

of low frequency spectral lines and smaller high frequency

components, the low frequency information is not weighted
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as heavily as the higher frequency information in the phase

reconstructed signal. This seems like it would accentuate

sharp changes in the reconstructed signature without

remroving relative location information. The result is the

sumrrat ion o f the different frequency components, all with

zero phase (i.e., no positional or amplitude distribution

information can retrain).

Considering the Mellin transform next, In a continuous

case, the exponential warp does not lose any information.

To zero the first data sample as required by the Chiapter

III modifications, will surely destroy information, but

this may be confined to the flC term alone. The information

lost during the final transform and magnitude is difficult

to assess. Increased masking occurs due to the spectral

truncation, so actual information loss may not be as great,

but masking distortion may be greater than before. So

approximately two bits of information are lost. Only a

quarter of what was, remains. Information is also lost when

the transforms are normalized in the processing so that any

power calculation is also meaningless. Some interesting

questions arise. After removing positional relationships,

scaling, and power, what signal qualities remain and are

they useful in classification? Although it Is true that

this Insensitivity may add a certain robustness to the

77



system, the arbitrary loss of valid classification

Information should be minimized.

By examining the quality that mrust be ignored, and by

comparing its removal to what is actually removed by the

processing, an interesting result will develop. The effect

of a time domain shift on the frequency domain Is an

additive phase term, linearly related to the frequncy of

the coefficient, as in equation (2). Most of the structure

of the signal is held in the phase relationships with

respect to the fundamental and higher frequency terms. So

shift can be defined as the phase of the fundamental

complex coefficient. By setting the phase to zero, and

adjusting the other coefficients according to their

component frequency, the structure of the signal is not

lost but reconstructed about the fundamental as before. If'

there are N/2 spectral phase angles, only the fundamental

needs to be zeroed to remove the shift. If the information

is contained uniformly in the spectral phase, then only 2/N

of this structural information needs to be removed. When

the magnitude is taken to produce shift invarient features,

all of the phase relationships are destroyed. (N- 2)/N of

the information once held in the phase was removed

needlessly. The amount of information lost removing the

shift can be made arbitrarily small. As N grows unbounded,

the amount of Information that needs to be removed tends to
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zero. This result seems to be supported by experience. With

enough samples of a shape, its position with respect to the

observation field Is irmaterial. In theory the principle is

sound, but some practical limitations may degrade predicted

performance. Recalling that an exponential warp translates

scaling to shifting generalizes the result a bit further.

The same priciple that permits simple shift removal is also

valid for the removal of scaling dependence as well. Using

the Mellin transform, scaling dependence mray be removed by

zeroing the fundamental and adjusting all the other

coefficients as described above. For the FM preprocessor,

the Information lost removing the scaling and shifting

dependence may be made arbitrarily small by increasing the

number of spectral samples used. Since the number of

spectral samples can be increased by filling zeros onto the

finite signal in the original domain, this process does not

effect the data sample rate. This approach was not verified

experimentally, but represents a potentially powerful tool

to analyse and improve the extracted feature space.
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P. RANG! CNIY RADAR

This section addresses ship classification on the basis

of information gathered from a range only radar video ship

signature. An example of such a signature has already been

considered as figure 16. Cldssification by range only radar

signatures is subject to the same distortions discussed

above. Typically, the radar return is detected and isolated

in a range gate that is sampled and digitized. The

rectangular sampling window can be considered the range

gate itself. The range gate is designed to ensure that the

Included range is greater than the maximum ship length so

that the time/range windowing has no effect on the

frequency spectrum of the signature, other than increased

spectral resolution. The placement of the ship signature in

the window is not set, neither from encounter to encounter,

nor from pulse to pulse (jitter). The total effect joins

together to produce the framing distortions. Signature

scaling results from viewing the ship from different aspect

angles. The sampling rate must be done at mrore that twice

the Inverse of the resolution of the receiver. Quantization

levels are chosen in a manner to reduce that predictable

random noise to an acceptable level. The pulse to pulse

jitter Is an ever present cbaracteristic of the radar

problem, but at a normal resolution (greater than 25 feet)

Integrating the return in the time domain removes the
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jitter effect, reduces scintillation, and improves the

resolution of the signature. Although predetection

(coherent) integration Is more efficient, post detection

(noncoherent) integration Is more commron because of the

convenience of not having to preserve the radar frequency

(RF) phase. For post detection Integration of n pulses, the

signal to noise ratio would be something less than n times

the signal to noise ratio -for one pulse [32]. More

important to the recognition problem itself, for a stable

system by the law of large numbers [33], fluctuation of the

average value of the return will be overcome. That Is, with

the Integration of n pulses the resolution (R) will become

finer as

1? (68)

with a probability of 1-fl, where S squared is the variance

of the signal fror pulse to pulse. For very high

resolution, the cost of making the signature stable with

respect to the integrator becomes prohibitive. It has

become convenient to integrate the spectrum of the

signature because the jitter effects can be completely

removed. Another limiting factor In Integrating over a

period of time is that the position and aspect cf the

target are dynamic. They change with time. A conceptually

attractive solution is a recursive filter which weights the
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Integrated pulses such that the older they becoire, the less

weight is accorded to them.

If the course and speed of the target ship are known

from measurement of the target track, it is possible to

infer the aspect of the ship. The range profile can give

some estimation of' size. Un for tuna tely, the three

dimensional change in aspect angle, commonly suffered by a

ship presents more than just a video signature scaling

change. The radar cross section of even individual

structural components of the radar target changes with

respect to the aspect angle. The composite effect is that

ship signatures vary greatly with aspect angle. The radar

is an electromagnetic sensor, reacting to energy reflected

f rorm the target. These reflections are a result o f

scatterers that are related in dimension to the wavelength

of the illuminating energy. Because of the great difference

in wavelength between light and microwaves, what can be

nseen" by radar tray be quite different than that seen by an

eye. Also, when measuring size or any, distances with a

radar of high resolution (less than 50 feet), an error can

be Incurred since the extreimities of the target are not

always good scat terers. Echoes from the forward or stern

ljortions of the target imight be observed in the noise,

especially for a relatively low power radar [32]. After

reviewing hundreds of signatures, It appears that major

82



features, such as overall ship length and domrinant mast

structure are frequently discernable, but vary in relative

amplitude. Resonance, shadowing (one reflector hiding

another), multipath returns, the mapping of three

dimensional aspect changes onto a one dimensional time

series, and the amplitude and phase of component returns

summing constructively or destructively to cause a

scintillation of the composite target. Some of the

variations caused by these conditions can be lessened by

integration but major effects remain causing the signature

to vary in shape and content with the aspect angle. For

this reason, a class feature volume cannot be reduced to a

single point, but will remain a hypervolume in the feature

space even in the ideal case. Any selection of features

should try to minimize this volume. Features should be

selected that are relatively insensitive to known

superfluous effects.

C. CLASS DISCRIMINATION

In the last chapter, the major concern was removing two

sources of variance with no classifying value. Algorithms

were developed and canonic shapes generated to verify the

algorithms and demonstrate the invariance to scaling. In

the same manner, this chapter has reviewed information loss

and process masking. The question of whether sufficient
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information is present to classify was raised. To answer

this question some simple classes of canonic figures are

defined, and put through the entire FM preprocessor

documented in Appendix B. The DMT algorithm found to offer

the best scale factor rejection in Chapter III was used to

generate the final features. The algorithm chosen is based

on a second difference modification and Is defined In

equation (62),

Ij -'Le
(62)

After canonic tests were rade, preprocessor performance on

several ship signatures was recorded. Although this was

premature In the logical test sequence, the results are of

some interest.

1. Test Shapes and Results

Four test shapes were used. Figure 18 shows the test

shapes. All were scaled and shifted originally to test for

algorithm verification and demonstrate scale invariance. In

this series of tests they were lef t fixed and used in

different combinations to try to detect shape presence In

the FM feature space. The object is to differentiate

between different canonic classes. Figure 19 shows a

comrparison of the shapes, rectangle and triangle. A test

combining the rectangle and triangle was the subject of
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figure 20. Finally in figure 21 a rectangle with two

triangles Is shown in the IM feature space. It is clear

froir the plots that mrost of the scale variance has been

removed. Just as important, some quality does remain that

differentiates between the canonic shapes. A square In

general can be differentiated from a triangle. A "ship"

with a single mass of superstructure can be separated from

one with two such masses.

Although It's clear from the plots that there is a

unique quality left in the feature space to allow the time

domain shapes to be classified, some quantified measure of

system performance Is required. The magnitude of the

feeature vectors have all been normalized with respect to

the first coefficient, so in that region little

discrimination can be expected. For higher Mellin

frequencies, noise dominates. A region of coefficients,

11-100 was chosen to classify the shapes by correlation.

The results are included as Table 2. The improvement in

performance over that shown by Table 1 in Chapter II is

dramatic. The methods In that earlier test resulted in the

observed length of an object being the distinguishing

criterion for classification. Using methods supported in

Chapter III, variations due to scaling and shifting of the

original domain have been removed. The features now reflect

the shape of the object in the time domain. An unusual
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effect is noted with respect to the difference squared

analysis in Table 2b. Although TRI2 is more closely

correlated to TRIl than RECT2 the squared error shows just

the reverse. The results are encouraging. The preprocessor

has greatly simplified the classification problem for the

canonic shapes above.

2. Ship Signatures and Results

A single ship was used to make these preliminary

tests for this thesis. Signatures were taken every ten

degrees around a ship from zero to fifty degrees. The

results are plotted and compared over twenty degree aspects

in figures 22-23. The signatures are the result of very

high resolution radar signature data that has been degraded

and smoothed to a lower resolution with essentially no

noise present. Recalling that the purpose of the

preprocessor was to remove variance due to pure shifting

and pure scaling, leaving enough Information for

classification, to the eye there seems to be little

encouragement from these results. It is recalled that a

goal of this preprocessor Is to make the classifiers job

easier by removing dependence on shifting and scaling of

the original data. The Information that remains depends on

unspecified signal characteristics that here appear to

useful in discriminating shape classes and possibly ship
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classes. However no real conclusion can be drawn at this

point because of the small data base and the absence of an

automatic classifier to generate an optimal feature space.
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Table 2

Canonic Shape Fourier -Mellin

Feature Comparisons

a. Peak Correlation Values

RECT RECT/2 TRI TRI/2

RECT 1.00 0.95 0.50 0.42

RECT/2 - 1.00 0.52 0.41

TRI - - 1.00 0.98

TRI/2 - - - 1.00

b. Squared difference between features.

RECT RECT/2 TRI TRI/2

RECT .000 .011 .010 .011

RECT/2 - .000 .015 .014

TRI - - .000 .011

TRI/2 - - - .000
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V. CONCLUSIONS

The preprocessor design began by considering a generic

classification systerr. A distinction was drawn between the

classifier and the preprocessor. The preprocessor is

problem specific. It assists in the classification by

extracting a set of features for the classifier. The

extracted feature space has enhanced natural clustering on

the basis of shape by removing information that was

extraneous for classification. Two useless characteristics

were identified as shifting and scaling. The preprocessor

was designed to remove dependence on these two

characteristics by using the invariant properties of a

Fourier transform followed in series by a Mellin transform.

The resulting set of coefficients are Fourier-Mellin (FM)

features.

A. REVIEW

In Chapter II a Mellin transform was developed using the

conventional digital processing approach which

exponentially warps the domain and then transforms the

spectrum by an FFT. This method is sometimes identified as

a fast Mellin transforff (FMT). The unbounded behavior of

the exponentially warped frequency spectrum was shown to

result in a function that could not be transformed. That
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is, the warped function has no transform because the Mellin

integral is indeterminate at the lower limit. Error

correcting techniques cannot compensate f'or the effect

because the error Itself cannot be computed in general. The

bound for the error was found and seen to be the envelope

for existing error correction functions.

Chapter III developed some useful properties of the

Mellin transform that were used to modify the signal so

that the pitfalls Isolated in Chapter II were avoided. This

was done by modifying the input to the Mellin transform to

always be transformable. To simplify the lImplementation and

to control the effects of sampling, a direct Mellin

transform was used for the development of the modifiers.

Several suitable modifiers were determined and tested with

differently scaled inputs for which the closed form

solution was known. The direct Mellin algorithm that

produced features closest to the closed form solution was

chosen for use in the preprocessor. Wiith the modifications

in place, the preprocessor was tested and shown to produce

features that were invariant to shifting and scaling. It

was also shown that the features retained enough

information to classify canonic shapes.

Chapter IV discussed what type of Information is

required for classification. Signal structure or shape was



identified as key information. A discussion of what

Information is required for classification and a means of

keeping the signal structure intact throughout the

preprocessor was advanced, but not empirically verified.

B. FUTURI WORK

The design FM preprocessor does produce a feature space

with enhanced clustering, but problems remrain to be

resolved before the full potential of the system can be

realized. There are three extant conditions that detract

fromr the performance of the implemented preprocessor.

First, the preprocessor is not computationally efficient.

Second, most of the signal structure that should be vital

to classification is obviously lost. And third, a complete

verification of performance has not been conducted. The

current preprocessor produces an enhanced feature base for

a classifier, but attention to these main weak points will

greatly Improve the applied techniques.

1. Efficient Processing

A direct Mellin transform using N spectral samples

to transform into M Mellin spectral coefficients requires M

by N multiplications. If only a few coefficients are to be

used then the number of multiplications may be small. Using

the FMT requires about N(20+ln(N)) arithmetic operations
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for the interpolation and the JFT. If twenty-five or more

Mellin coefficients are required, the FMT is faster. The

modifiers used to prepare the spectrum for the direct

Mellin transform will also work for as FMT, but this should

be demonstrated experimentally. Because the FMT directly

weights the lower numbered samples it may produce more

accurate results as well.

2. Conservation of Information

Chapter IV discussed the type of information

required for visual pattern recognition in humans. The

preservation of this information should be a specified

design goal for the preprocessor. The preprocessors built

for this thesis removed much of these vital signal

properies. A mpeans was introduced to limit or control the

loss of structural detail by zeroing the fundamental phase

and adjusting each of the remaining complex coefficients to

reconstruct phase relationships. This may be done in the

frequency domain as described, or by a similar operation in

the tie domain, shifting the centroid to zero. In either

case, to transform more information about the signal will

effectively increase the sensitivity of the features to

characteristics in the time domain. This increase in

sensitivity needs measured to confirm the approach. It is

also possible that continued selective zeroing of
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coefficients may offer improved performanice or robustness

to the system as a whole.

3. Verification

Although the im;roved performance was demonstrated

vith respect to ealier F11 digital preprocessing, a direct

iiprorement factor needs to be established. Time domain

correlation should be used as a measure of original signal

classifiability. This measure needs to be compared to the

F11 domain correlation recorded as Table 2 in Chapter IV.

Next, the preprocessor or an improved version will have to

be married to a classifier and realistic data used to

evaluate its effect on the classification system. The F
preprocessor built was design to be used on-line. An

on-line classifier needs to be built as well.

The systematic evaluation of ship profiles using FM

features is still a requirement. For several ships, FM

features must be singled out and plotted together as a

function of aspect angle. The purposes are to establish a

range of aspect over which classification may be possible,

to evaluate changes of structural content as discussed In

section two above, and to determine the beam signature as a

classification "node". Although these purposes assist in

the system design, the third is more of an operational

necessity. All ship signatures will degrade to the bear,



aspect "node" so that this hypervolune in the feature space

Is occupied in common. Therefore the beam condition mrust be

detected and withheld from ever entering the classifier.

Nor should beam signatures be used for classifier training.

The beam "node" needs to be determrined separate from the

classifier. Initially this Information can be plotted to

examine feature behavior and confirm the rethodology,

automated methods will quickly follow. These analysis

functions may never reside In the classification system

Itself, but must be a part of the tools used to develop a

-' workable classification system.
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APPENDIX A

C

C * THIS PROGRAM IS A DIGITAL IMPLEMENTATION OF *
C A FAST JOURIER TRANSFORM FOLLOWED BY A MELLIN *
C * TRANSFORM. THE DIGITAL IMPLEMENTATION OF THE 
C *ELLIN IS AS AN EXPON NkILLY SAMPLED SPECTRUM
C * IHEN RUN THROUGH AN PIT AND CORRECTED FOR THE ,
C * ERROR B! AN! ONE OF SEVIRAL CORRECTION
C * SUBROUIJES--CORCTI. *
C
C
C RECORDED PLOTS / PLOT NUMBER USING RECORD CALLS

C -TIME FUNCTIO (ACONT}/ 1
C -SAMPLED TIME ,U N~CIU/ 1
C -FFT (CONT) /2
C -EX PENTI LL SAMPLED FFT / 2
C -UNIFORMLY SANPLED FT j 3
C -DISCRETE MELLI ?EATUR S /4
C
C
C RECORDED PLOTS / PLOT NUMBER USING RECANG CALLS
C -TIME FUNCTION SCOUT) / 1
C -PPT UNIFORMLY SAMPLED / 2 (RAG & PHASE)
C -MELLIN FEATURES / 3 (RAG & PHASE)
C
C
C

DIMENSION IREAL (200) ,XI NAG (200) ,ZINT (200) ,T (64),
IERT (200)
XSC LE = 31
BU-=M=2**MhJ
HU=7
u=2**NU
CALL SAUP XEAL ZIMAG N)
CALL RECORfDXREIL.XI.lGNISCALE)

C
C CCMPUTE THE ACTUAL SAMPLE POINTS AS PROVIDED BY THE
C SAMPLED VIDEO.
C

1-2**NU
CALL SA NP tXDEAL XZAG N)
CALL RECORD (ISEi.XIILGP.ISCALE)

ISCAL! - 31
LU= 7
L=2**LU
LO 200 II1,L
I (I.GT.N} GO TO 150
lINT I) mIRE AL I)PR?(I )m=I~fl . (I)
GO TO 20Q

150 lINT(I) "(1.0

200 PITINUE
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CALL IFT(XINTPRT,LLU)
CALL lIFT RAI LIlA G I)

310 CALL RECORD NXahL.,IMAGoNoISCALE)
CALL RECORD (XINTPRT,LISCALE)
ISCALI - 34
DO 300 I-I N
XB AL tI)-S6ET (IRBAL (I) **2 ZIMXG (I)**2)
1INAG (1-0.

300 CONTINUE
C
C
C CALCULATE TiE NEV SAMPLE POINTS AND INTERPOLATE
C TC FIND TUE EXPONENTIALLY SAMPLED VALUES.
C

CALL NUPTS(XINTM,N)c
C AFTER MEN INTgRVALS CALCULATED AND STORED TEMPORARILY
C IN VECTOR lINT, STORB FOR LATER PRINTING IN T VECTOR.
C

DO4 00 1-1,8
FRT (I1)0.0TfII)'V T (I-)

400 C vTIup
C
C MITH THE BEV TIMES IN VECTOR HINT, AIND THE CURRENT
C SPECTRB SAIPLES IN VECTOR XREAL COMPUTE THE NEW
C EXPONENTIAL SAMPLES IND ENTER THISE INTO VECTOR
C 1INT BY USING THE CHOSEN INTERPOLATION METHOD.
C FINALLY RECORD THE FIRST SANPLE TO BE USED LATER
C TO CORRICT THE MELLIN TRANSFORM FOR LOW FREQUENCY
C LOST IN THIS EZPONENTIALLY SAMPLED TECHNIQUE.
C

POXREAL t1)
399 CONTINUE

CALL INTP2(XREAL, i, lINTM)

&BkITB42#407)114J01 FORMAT (f4)

CALL SAX(XINT,PRT,BSCALE)
DO 410 1=1 M
IREAL (i) - iNT (I)
lINT(I)=SCALE * XINT (I)
IIEAG(I)0=
URIT! 2 15)T) INT(I)

415 FCREAT*1O. 5,7X,F0 .5)
410 CONTINUE
C
C SUBMIT THESE EXPONENTIALLY SAMPLED VALUES TO THE
C FINAL FPT BLOCK.
C

CALL IFT(XREALIIMAGMU)C
C APPLY THE C.ORRECTION TERN, FIND THE MAGNITUDE
C OF THE NOW SCALE AIND TIRE INVARIENT FEATURES.
C
CCC CALL CORCTI (XREALIMBAG,NFO)

CALL CORCT2 (XREAL,XIMAG,M,FO)
CALL RECORD'(XREAL, XIlAG, ISCALE)
STOP
END
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C *********************
C *SUBROUTINE FT GIVEN TEE COMPLEX

C *SAMPLES I2*U) WILL RETURN THE *
C *N COBFFIECIENTS US ING A CPT.*
C

SUBROUTINE PPTAIRZAL .IIMAG N,NU)
DIMIENSION EAL (N) , IAG (NI
V2-5/2
DC 1=11U-1
11-0
DO 1S0 L-1,NU

102 DO 1 1 1-1 N2
f-IBITR IKA** 31 UImkv
ARG-6.2 31 8S*P O
C~COS (LEG) /LA NS-SINJARG)

TIMAG-IIHAG (K112 *C-IREkL (K 112) *S
IREA 112: REAL 11 -TEAL
huMG K152 IEAG Ki) -TIMAG
XREAL 11 aRE AL K *TREAL

101 KK+*1 ~

IF4K.LT.N) GO TO 102

100 32N2j21 1.. KG T10

Z-IBITI (K-i.. x1%.
TEE AL-IRE LIK
TINAGIEAG I
IREALIK -1XAE lZ11AG K -XIlAGI
IDEAL I -T~Li
11 AG I =TLMAG

103 CC TI
B ITUR N
END

C

C JUNCTION luITR
PUNCTIONI IBITE (3,)iU)

.32-J1/2
IBITRIBaITB*2. (.31-2*32)

200 31-32
SET URN
END
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cC ***.*, ..*. s***.. **..**,***..s**.**.** ... *..*.e.*sss**,s
C * INTP2 IS A SECOND ORDER INTERPOLATION BASED ON A *
C * PCLINOMIAL EQUATING TO FIRST AND SECOND DERIVATIVES *
C * APPROXIMATED BY CENTRAL DIFFERENCES. THE INPUT VECTOR *
C * <1> CONTAINS UNIFORMLY SAMPLED DATA WITH UNITY *
C * BETWEEN CONSECUTIVE SARPLAS. VECTOR <Y> IS INPUT *
C * WITH THE MEN SAMPLE TIMES AND OUTPUT WITH
C * THE NEW SAMPLES. THERE ARE 5 UNIFORM SAMPLES IN <X>
C * AND 8 WARPEC SAMPLES IN <Y>.

C
C

SUBROOTINE INTP2I, NY, AlDIRENAION X3i3),111),:TICE

C CHOSE THE I SAMPLE TIME CLOSES TO THE WARPED
C TIME HELD IN <Y>

DO 60IY=1,8

CT =100
DO 10 X=1 N
IITIME= I- i
STABS a ABSIDT}
DIST FLOLT(IXTIME) - Y(I)
DIST BS ('DIST}
IF (DTABS .LT. DIST) GO TO 25
DT = (I) - IXTIME

10 CCNTIN U
25 IXTIME = IXTIME - 1

J1 = -1
DO 30 J=1 3
J1 = J * IITIME - 1
13(J) =ax (,l)

30 CGNTIUGE
TIRE = IY)60 CIT) ;,C& (X3, TIRE,IXTIlR)

60 Cc3NTIUEU'
RETURN
IND.

C
C ECN IS THE INTERPOLATION RULE.
C

FUNCTION FCI X,TI)
DIMESSION X(3)
TX = FLOAT (I)

C
C CCMPUTZ THE COEFFICIENTS.
C

E *- X 1( /20 - TX
C a () - A .- B * TX

C
C CCHPUTE THE INTERPOLATED VALUE.
C

ECU ;NA *(T**2) + B* T + C.BETUR
END
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C *********************************..,*****..***
C * SUBROUTINE INTERP USES A LAGRANGE THIRD
C * CBDIR METHOD OR & SECOND ORDER POLYNOMIAL *
C S TC COMPUTE THE INPUT SAMPLE WAVEFORA. *
C * *
C * THE SUBROUTINE INPUTS ARE: *
C I I-SAMPLED IAVEFORH *
C A N-THE NUMBER OF X SAMPLES *
C Y V-INPUT SAMPLE TINES *
C * -OUTPUT ITERPOLATED SAMPLES *
C 1 1-THE NUMBER OF V SAMPLES *
C
C

SUBROU0TINE INTERP X Y BSH~ 16

DIMENSION X4(4) ,IN #( HFTX(156)C
C FIRST CHOOSE ZTINZ NEAREST BACH STIhE
C THEN COMPUTE THE INTEEPCLATED VALUE Af THAT PT.C
C

DO 100 Ill
15-I+5
IJ I.GE. (N-5 GO TO 101SHTi'X' mI)_x (li

GO TO iO0b
101 15=-- 1 -5)SHIT |I5) =X.(I)100 CONTI UE

Cc 40 T=s40 CONTINUE

YP-100CO 60 1Y1l,M

Cc 10 IZ=1,.N
IXTIX- 1
IPABS=ABS(VP)
DIST=ABS (ILT-!(jI))
IF(QP BS. LT.DIST) GO TO 25YP=T(Y JY-IXT
IX4-IX 5

] CCNTINUE
IX4114-2
DO 30 J=1 4

S(J) =S HFf X(IX4+J)
30 CONTINUE

IMi-14+1I0I=II4+IO=ZX4+2
I-1.Z14+3
IP2=114+4

35 Y (IT) YLAGR (x4, VP)
60 CONTINUE

RETURN
END
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C
C FUNCTION YLIN MAKES & LINEAR INTERPOLATION.
C
C

FUNCTION ILIN(IY P)
CIMENsZON I (
IFI(P.LT.O.) GO TO 50
!LI N=X4 (2) +*P*(X4(3)-XI(2))
RETURN

50 YLIN=14 (2) -IP' (X4 (1)-X4 (2))
BETURN
END

C
C
C
C FUNCTION YLAGR COMPUTES THE LAGRANGE MULTI-PLIERS
C AND SAKES THE INTERPOLATION FOR A CHOSEN OFFSET
C FROM THE CENTRAL SAMPLE 14(2)
C
C

FUNCTION YLAGR (X4,YE)
DIMENSION X4 4)
CM1-!P* IYP-)* YP-21/6.0
C = P**2-1, - )2.0

Cr!f*A (P**2- 1)/
YLAGR-CM 1*X4(1) CO;ZX4 (2) -CP lVI (3)+CP2*X4 (4)
RETURN
END

C
C **S*B*O*****.****TS**&***L*****T********O***T****S******
C * SUBROUTINE NUPTS CALCULATES THE 8 EXPONENTIAL SAMPLE
C * ECINTS EROM THE N UNIFORM SAMPLES OF THE EXISTING
C * SPECTRUM .IN PREPARATION FOR AN INTERPOLATION. THIS *
C * EXPONENTIALLY SAMPLED SET Of POINTS ARE STORED IN *
C 1 THE INPUT VECTOR 1.
C

SUBROUTINE NUPTS (XI E.N)
DIMENSION (156)
UN-FLCAT N /2.0 + 1.0
EM-=LCAT NM)-1.0D ELZ-LOGU ( N B
DO 100 -1 ,
SI-FLOAT (I -1.0
VALUE - SI DELZ
I I)=EXP (VLLUE)

100 CONTINUE
RETURN
END
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C * THIS IS A STUB PROVIDING A TEST SKIN RETURN *
C * TC SIMULATE A SKIN RETURN. NORMALLY THIS SUBROUTINE *
C * WILL ACTUALLY SAMPLE A SKIN RETURN. *
C ******** ******** *************************************
C

SUBROUTINE SAMP(XR,XI,N)
DIMENSION XB(N),XI(N)C

C DESIGNATE SCALE FACTOR AND UNSCALED TIME SHIFT.
C

SCALE = 16 / 32.
SHIFT = 0.6 / 32.
SCALE =1 .O SCALE
TO .5 + SHIFT
N 1=N-1
CO. 100 1=1,

11(1) =0.
C
C CALCULATE THE TIME OF THE SAMPLE.
C

SK- (FLOAT (I)-1.0)/FLOAT (Ni)C
C EUILC THE TEST SKIN RETURN.
C IN THIS (C 2-PER) CASE A DOUBLE PERIMID.

TSCALE = (Si-TO)*SCALE
IUFs = 1
IF(IHm .EQ I) GO TO 10
IF(IFl oEG . 2) GO TO 50

10 = 8. /32.
IF (TSCALE .LT. - ) GO TC 100
IF (TSCALE oGT. +) GO TO 100
IF (TSCALE .LT. TO) GO TC 20
R(I) = (TO- TSCALE) * 10.0

GO TO 
-0

20 XH(I =V * 10.0 - (TSCALE - TO) • 10.0
100

50 CCNTINUE
C 7HE FOLLOWING WAVE FORE IS A SQUARE WAVE 16 SAMPLES
C WIDE CENTERED AROUND THE SIXTEENTH SAMPLE.
C SCALING AND SHIFTING DONE ABOVE WILL EFFECT THE
C HAVEYCRB ACCORDINGLY.

TSCALE = (SK-TO)*SCALE
EDGE = 1. / 4.
IF TSCALE .LT. -EDGE) GO TO 100
IF (TSCALE .GT. *EDGE) GO TO 100
XB(I) = 1.0

100 CCNTI NUE
BETURN
END
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C THIS SUBROUTINE RECORDS A SELECTED DATA SET,
AND SCALES THE INDEX TO 32 SAMPLES (0-31).

C * THE INPUTS ARE MEAL ZIMAG AND N (THE
C URBER OF SAMPLES). ISCALE IS A CCI ROL •
C * VARIABLE. •
C * IF ISCALE = 0 NO SCALING IS PERFORMED
C * SCALE = 1, AXIS = 31 •
C * SHIFT = I (STARTS AT T = 0
C * ISCALE < 0 SHIFTING AND SCALING OCCURS *
C * ISCALEZ = AXIS LEM. A SHIFT IS INCORP- *
C ERATED SO THAT AXIS STARTS AT 1. •
C • ISCALE > 0 AXIS SCALING OCCURS BUT THERE IS *
C * NO SHIFT (Il., THE AXIS STARTS AT 0.) •
C * •C ************************** ****************$***s******
C

SUHROOTINE RECORD(X, XIE N ISCALE)
CIMENSION 1B(M),X (fiR C(200)
SCALEm1 0AXiS = 3SHIFT = 1
WBITE42.50)mN

50 FORITMA (W5)
IF(ISCALE .EQ0 0) GO TO 40
AXIS = FLOAT(ISCALE)
AXIS =BS(AXIS)
IF( ISCALE .LT. 0) SHIFT = 0
CALL S[AX (XR,XI, N, SCALE)

40 DO 100 I=1 N
SI = I-SHIF,)*AXIS/ FLOAT4N-1 0)
REC I)-SQRT(II() *22+R )2

60 CCNTINUE
REC I)=SCAL!*REC I
WRITE(2 75) I REC(I)

75 FORMAT( o. , ,1.5)
100 CONTINUE

BETURN
END

C
C

SUBROUTINE SIIAX(XRXI,N,SCALE)
DIMENSICU XB(i),XI (N),T (200)
XMAX=1.0
DO 100 IT, N
T(I).=SQTjf (I) **2 XI
IF(()L .. MAX) GO Til 001XMAX = TLI)
SCALE 1. O/mAX100 CONTINUE
ETORN

END
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C THIS CORRECTION SUBROUTINE USES ONE OF *
C THE SIMPLER CORRECTIONS FOR THE HELLIN
C * TRANSORM. THE CORRECTION IS A PURE IMAGINARY.
C *
C * CORRECTION a -P0/OMEGA*
C *
C *THEY A MODIFICATION IS MADE TO THE ENTIRE
C *TRANSFORM B! A MULTIPLICATION B! OMEGA.*

SUBROUTINE CORCTI(XR, XINFO)
cIMEbSIN 1 X(N),XI(N)
DO 100 ;=1,x
OMEGA = FLOAT(I) - 1.

8(I) = QXR(I) * OMEGA
IF( I.EQ. -.).GO TO 90
ZI Po =XI(I) - 0/OMEGA) * OMEGA
GO TO 10

90 XI(I) = F0

100 CCNTINUE

RETURN

END

C ************************** **** ** ********************

C * THIS CORRECTION APPLIES THE MORE COPLECATED
C * EXPRBSSION.*
C * COBRECTION = FO/2 + JCOT (P0/OMEGA)
C * "
C AND THEN MODIFIES THE ENTIRE TRANSFORM BY 1/ONfE GA 1-
C s
C

SUBROUTINE CORCT2 (XI,XI,N,FO)
DIMENSION ZR(N) , XI (S)
CO 100 I-1,N
CMEGA = FLOAT(1) - 1.

XR(I) = (XR-() + F0/2.) * OMEGA

IF(I .EQ. 1)GO TO 90
I(I) -11I) - (FO/2.)*COTAN(OMEGA))*OMEGA

GO TO 100

90 11(l) = F0/2.

100 CONTINUE

RETURN 
END
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APPENDIX B

CC ***S*S******4.********************88 *$** ****~mWSSSSS**

C * THIS PROGRAM FOURIER DIRECT MELLIN TAKES AS INPUT *
C * WAVEFORN FRCA LOGICAL DEVICE 2 PERFORBS AN FFT
C * FOLLOWED BY A aDAT CUTPUTING THE FEATURES TO LOGICAL •
C * DEVICE 3 FOR LATER PLOTTING BY MELPLT. THE MAJOR *
C * DATA STRUCTURES IND SUBROUTINZS ARE LIST3D BELOW
C * IN ORDER OF THER APPEARANCE. THE SUBROUTINES ARE *
C * DESCRIBED IN MORE DETAIL WHERE THEY ARE ACTUALLY *
C * LISTED IN THE PROGRA4. *c $ $$ ,S **$***1l** m $ * $*******$$**********t ** ** ***s**.*s**
C
C
C
C
C 9AJOB DATA STRUCTURES:
C <WEB> - THE INPUT WAVEFORM (REAL)
C <XBM> - THE MELLIN TRAMSFOR MCOM PLEX)
C <CPHI> - REAL MELLIN COEFFICIENTS
C <SP.fI> - IMAGINARY MELLIN COEFFICIENTS
C <STAND> - AN ARRAY HELD FOR LATER COMPARISON
C OR OTHER USE.
C <PET> - AN ARRAY NORMALLY USED TO HOLD REAL
C DATA TEMPORILr. A WORK SPACE.
C <IXT> - I AXIS TITLE FOR PLOTTING
C <ITT> - T AXIS TITLE FOR PLOTTING
C <KEY> - NUMBER OF PLOT THIS GRAPH
C
C
C
C SUBROUTINES:
C WAVE - READS AN ARRAY FROM LOGICAL DEVICE 2,
C AND FILLS ZEROS TO MAKE A TOTAL OF 256
C SAMPLES. THE OUTPUT IS IN <1FM>.
C FFT - AN PFT BLOCK
C COEP- COMPUTES THE MELLIN TRANSFORM SAMPLE
C WEIGHTS. THESE ARE COMPLEX
C NUMBERS WHOSE REAL AND IMAGINARY
C PARTS ARE STORED IN <CPHI> AND
C <SPHI> RESPECTIVELY.
C DATA - APPLIES A MODIFIED DIRECT NELLIN
C TRANSPORM TO AN INPUT WAVEFORM
C PUTTING THE OUTPUT IN <1F>.
C THE ALGORITHM IS BASED ON A FIRST
C BACKWARD DIFFERENCE.
C SAT- APPLIES A MODIFIED NELLIN TRANSFORM
C BASED ON A SECOND DIFFERENCE.
C SMT2 - APPLIES A MODIFIED MELLIN TRANSFORM
C DIFFERENT THAN SAT BUT ALSO BASED
C ON THE SECOND DIFFERENCE.
C CD.T - APPLIES A MODIFIED MELLIS TRANSFORM
C JUST AS DATB ABOVE, EXCEPT THAT THE
C CENTRAL DIFFERENCE IS USED.
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C SIE- APPLIES A MODIFIED MELLIM TRANSFORY
C USING A BACKWARD DIFFERENCE AS IN
C DAT8 EXCEPT THAT THE INTEGRATION
C IS Bf SIMPSONeS RULE INSTEAD OF THE
C TRAPEZOIDAL ROLE.
C XAB - TAKES THE MAGNITUDE OF THE COMPLEX
C TRANSFORM <XPM> AND POTS THE
C HANITUDE IN A SPECIFIED VECTOR.
C STOW - NORMALIZES A VECTOR BY ITS
C AAGNITUDZ AND WRITES IT TO
C LOGICAL DEVICE 3 WITH A TITLE
C FROM LOGICAL DEVICE 4.
C HOLD - LOADS ONE VECTOR INTO ANOTHER.
C ALTER - CHANGES <1PM> BY SCALE &/OR SHIFT
C AND OUTPUTS TO A SPECIF ED ARRAY
C INTP3 - A SECOND ORDER SPLINE INTERPOLATION.
C CFO2H - PROVIDES TWO CLOSED FORM SOLUTIONS
C FCR VERIFYING THE MELLIN ALGORITHMS.
C TITLE - ENTITLES THE PLOTS ON THE BASIS OF
C THE CALLING PROGRAM.
C
C
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C SO THE BAIN PROGRAM STARTS!

DIMENSION P-BT(256) ,FM(256) ,STAND (256) If(5)
CCBOMN IF8(256 21oCEHI (256, 12) , SPHI (26, 128) PI,IIXT (1I,Y 00f , IT

DATA IF/@ hRl,'EQOEU'*NCY 1,0 @#1 1/

El = 3.141592654

C HO MANT WAVEFORMS ARE TO BE TRANSFORMED?
BEAD(2, 10) NOWF3

10 FORM T(141

C ITHS IS THE NUMBER OF TIME SAMPLES (INCLUDING
C ANY ZERO FILLING). IT IS A POWEB OF TWO
C FOR THE CONVENI ECE OF THE FFT.
C 8PTS IS THE NUMBER OF SAMPLES INPUT TO THE
C BELLIN TRANSFORM BLOCK. THE COEFFICIENTS
C ABE COMPUTED NOV.UNO 8

ITMS = 2**N,U
BPTS = NTHS/2

50 PORMAT(I4)
lCOEF N STIS
CALL CORP (NCOEF,RPTS)

C SET UP THE LOOP FOR THE NUBBER OF WAVEFORAS
C TC BE PROCESSED.

DO 500 IVAVE=19 NUmMFm

C GET THE NEXT INPUT 1AVEFORS.
CALL VAVE(UFfMNTMS)

C ZERO THE <STAND> VECTOR TO BE USED AS THE
C IMAGINARY PART OF THE NTMS TIME SAMPLES.

DO 100 I=1,ATMS
STAND(Il = Q.O

100 CONTINUE

CALL STC(F ,NTMS)
C TAKE THE FT.

CALL TITLE (IF)
CALL IFT(WFM, STAND, NTMS, N)

C TAKE THE MAGNITUDE AND EUT IT INTO THE COMMON
C WAVEFORM <VPB>.

DO 200 I=1 ,TS
WIM I WfIfI)**2 + STAND(I)**2
II I =SQBT(FH(I))

200 CONT IUE
CALL STOW (UFM,NTMS)

C TAKE THE BEMLLII TRANSFORM OF THIS SPECTRUM
C USING THE FIRST HALF OF THE FFT SAMPLES I
C OTHERWISE KNOWN AS BPTS=NTS/2. THESE IRE THE
C CL UNIUE VALUES.

CALL DBT (1F1 *,PTS NCOEP)
CALL JAB (P T ECOEF)
CALL STCV (PRTNCOEF)
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C
C
C NEXT CALL THE SECOND ORDER RULE DHT
C SUBROUTINES. BOTH COMPOTE THE SELLIN
C USING THE SECOND DIFFERENCE APPROXIMATION
C INSTEAD OF THE FIRST DIPFERENCE APPROXIMATION
C ABOVE. OTHERWISE THE APPROACH IS THE SAME.
C
C

CALL SMT (VFMMPTS NCOEF)
CALL XI PRT NCOE)
CALL STC (PRl.NCOEF)

CALL SNT2IHZM MPTS NCOEE)
CALL XAB (PRT. COEF)
CALL STC (PBTNCOEF)

C CALL CDMT *HICH USES THE CENTRAL DIIFERENCE
C ROLE FO APPROXIMATING THE TRANSFORM.

CALL CDMT (HFMMPTS, NCOEP)
CALL XAN(PRT NCOEF)
CALL STC (PRT,MCOEF)

C CALL SIMP WHICH COMPUTES THE MELLIN TRANSFORM
C USING THE FIRST DIFFERENCE ALGORITHM AND
C SIEPSON'S RULE TO COMPUTE THE MODIFIED
C HILLIN TRANSFORM.
C

CALL SIMP(VIM PTS SCOEP)
CALL IAB (PRT? COEf!
CALL STCO (PI',ACOEP)

C IND THE TRANSFORM LOOP. THE TRANSFORM HAS BEEN
C OUTPUT TO LOGICAL DEVICE 3 AND PREPARED WITH
C TITLE INFORMATION PROVIDED BY LOGICAL DEVICE 2
C FOR PLOTTING WITH PROGRAM MELPLT FORTRAN.
C STAY IN THE LOOP IF MORE WAVEFORMS ARE AVAILABLE.
500 CONTINUE

CALL CFOR (PRT,NCOEP)
CALL CIORE (PRT, NCOEP)

STOP
END
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C7i

CCc *e***e*e*****************s***********ssss,**
C * THE WAVE SUBROUTINE PRODUCES A WAVEFOR IN *
C * READ ZRON THE LOGICAL UNIT 2 NORMALLY I SHIP *
C * DATA PILE. THE N SAMPLES ARI READ AND THEN 
C * ZEROS ARE STUFFED TO FILL THE 256 SANPLES. *
C * THE REQUESTED VAVEPORA IS OUTPUT IN THE
C * COINON ARRAY IFfi 256).
C ,***,*V**,*•,*,*•, ,* ***,*************.**********
C

SUBROUTINE DAVE (WFE,IPTS)
DINENSION WPM(NPTS) ID (5
CCNOM FN (2562) C HI(256,128),SPHI(256,128),PPI,
1lIT (10),I T (10f, KH
DATA ID/I RAN1,'GE SoeASPL#,tES ,#

READ (2, 10) KEY
READ (.0)IT (I =1,10)

30 PC& IO (J , ",1I)
50 BEAD ,10) N

READ (2 201 (111() ,1=1,1)
CALL TTL (ID)

10 PCREAT (14i
20 FORNAT (I0.5

IP(N .EQ. NATS) RETURN1 = +
DO 100 I=NNPTS
VPR1I) = 0.0
RETURN
IND
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C
C
C
C *********************
C * SUBROUTINE ZFT, GIVEN THE COMPLEX
C * SANPLES I 2**UUmN WILL RETURN THE
C * 8 COEFFI ICIENTS UING A BiT *
c

SUBROUTINE FiT fXlIAL X13kG N YU)
DIEBNSICN IUEAL(N) ifilAG (I
001-U -
9-0
DO 1 sO L-103U

102 Do 1I ilint .32
F;IBK ~ 10 0

C=COS (ARI / (NS-SIN ARG)

TREAL-REAL(K1N2) *C*XIIAG (K 112) *S
TIMAG IBAG(KI112) *C-XBEAL (K1-N2) *S
IDEAL(K 112)- RE Ajl (1-TREAL
XIAG (K112) :RIAG (11 -TIMAG
IDEAL (K 1) hEAL (K1) +TREAL

101 UAG (KI) UINAG (K1) 4T.TfiAG
K-K+N2
IP 6 K.LT.N) GO TO 102

100 32-32/2
DO 103 9-1 N
ZInIBITi (K-i NU+
Ii JI.LillK) Gh 3103
TIE Alm IE IL(I)
T13AG-ZIBA
IREAL(K) IBR1AL I

IREAL (I -TRIAL
10 INAG I1 -TIKAG
10 CCTl UlE

IND
C

C FUNCTION BT

FUNCTION IBITR(J,NU)

DO 200 I-INU
J2-J1/2
IBITR-IBTR*2+ (JI-2*42)

200 JlwJ2
RET URN
IND



CC ******.*...*.*.******************l************~sseqt11ss*s**
C * THE CORY SUBROUTINE COMPUTES THE SELLIN *
C * COEFFICIENTS IN TO COMNCN ARRAYS CPRI AND
C * SPRI THAT REPRESENT THE REAL AND IMAGINARY
C PARTS RESPECIVELZY. THE TERS ARE COMPUTED
C B Y! THE FORMULA:
C * P11I(IJ,) = J**S NHERE S = A NORMALIZED •
C • J)SCRETE RADIAN FREQUENCY. •C ,** ******************,***********,******** * *******
C

SUBROUTINE COER INCOE NPTS)
COMMON X11(256 .)CPHI(256,128) SPHI(256,128),PIelIXT (10) oI T 6I0 YKE
DO 100 f = 1, sOEE
RI = FLOAT N[
CmEGA = 2 P4 I * RI / 36.
DO 200 J = I NPTS
RJ f PLOAT (j
CPHIJ; 1,a COS (OMEGA *ALOG (NJ))SEHI I J) = $IN (OMEGA ALOG RJ

200 CONT I5
100 CONTINUE

5ITURN
IND
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C
C

C * THE DNTR SUBROUTINE PERFORMS A DESCRETE NELLIN *
C * TRINSPORS ON THE ARRAY WE. THE FORMULA
C * FOR ONE BELLIN FREQUENCY VALUE IS:
C * ZFK(I)-SUI(KU1 TO METS) (VFM(I+1)-VFB(I))*K**S
C
C * THE COMPLEX COMPONENTS CF K**S ARE COMPUTED PRIOR *
C * TC CALLING DETN AND STORED IN THE COMMON ARRAYS
C CPHI AND SPHI AS REAL AND IMAGINARY PARTS *
C R ESPECTIVELY. THE ALGORITHM IS BASED ON THE *
C FIRST DIFFERENCE. THE TRAPEZOIDAL RULE IS USED *
C • FOR THE INTEGRATION. THE COMPLEX OUTPUT FOR
C * THE TRANSFORM IN IN THE CONRON ARRAY XIF>. *

C
C

SUBROUTINE 05TK(SA5PNPTSHCOEF)
DIMENSION SAP (PTS) .I
COMMON IFN(256,2),C HI(256,128),SPHI(256,128),PI,IIXTib 10.IT-410) Kty

/" IyfD- IE'ALLIN',' FRB#,lQUENl'.CY I/

CALL TITLE(ID)
Do 100 I=I,-.COEFJFKN (1,1) =0.0

vi iPTS - 1
DO 200 Jil,Nl
J1 J + 1
xIM ,) ACPHI(,J) (SAMP (J) -S AP (i) + XFN
IFN ~12) SPHI(I J) * SAMP(J) -SAMP (Ji) + XFM,(1.2

200 CoNT IIu
100 CCNTINUE

RETURN
END
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CC ****************S **************************************

C * SET IS A SUBROUTINE THAT COMPUTES A NUMERICAL *
C * APPBOXINATICH TO THE MELLIN TRANSFORM AS DOES *
C * CHTH ABOVE. SAT USES A THAPAZOIDAL APPROXIMATION *
C * TC COMPUTE THE TRANSFORM, BUT USES THE SAME *
C C COEFFICIENT MATRIXES <CPHI> AND <SPHI> CONTAINED ,
C i s1 COndom. *

C

SUBROUTINE SHT (SANP,NPTS SCOEF)
CINESSICY SAMP (QPTS ,IDAS)
condON XII 1256 2C 11"s
lIT (T101 t (5o ktCP I(d 56,128),SPHI(256,128),PI,
CAT A I 1 FR'QUENCY I/
CALL ZITLE (ID)

C INITIALIZE THE INPUT ARRAY AND COMPUTE
C THE LOOP CONSTANTS.

Ni a EPTS - 1
12 - 1I - 1

C SET UP THE TRANSFORM LOCP. THE OUTER LOOP
C SETS UP THE COEFFIECIENTS WHILE THE INNER
C LOOP COMPUTES THA SON WHICH ARE THE
C CCEFFICIEUTS.

DO 200 J i 1,NCOEF

118 3 2 .
10= -1,I
Il a I +
12 - I + 2
DELTA = SAEM~10) 2.* SAMP (Ii) + S AMP 12)

III~ ~ ~ Jl (31+ I 31 DELTA*CPHI (,I*
XF! (3 2) Ir 1 32) + DELTA*SPH I (3.1) *1I

100 CCNIIU B

C 1PM (31) = Ira (31)/FLOAT J *PI/18.
C IEM(3,2)J I(32) / FLOAT(J)*P is:8.

XERIM : - 0F~ '

111_a(1 11(3,) / SRT(1+ (FLOAT(J)*PI/8.)**2)
20 I412 U a 1((J I) / SQRT(1+(FLOAT(J)*PI/18.)**2)200 CONlfiZ1
RETURN
END
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C
C
C
C * sT2 IS SUBROUTINE THAT COMPUTES A NUMERICAL
C * APPROXIMATICN TO THE MERLIN TRANSFORM AS DOES
C * ENTH ABOVE. SAT USES A TRAPAZOIDAL APPROXIMATION
C * TO COMPUTE THE TRANSFORM BUT USES THE SAME
C * COEFFICIENT MATRIXES <CffI> AND <SPHI> CONTAINED *

C * IN COMMON.
C
C

SUBROUTINE SAT2 (SAMPNPTS NCOEF)
CIENSION SAMI( .PTS ID1 i F
COMMON IFS (256 2C 1I( 5 ,128),SPHI(256,128),Pl,IIXTI 10bY 00F (Ii EY

CALL TITLE (ID)

C INITIALIZE THE INPUT ABRA AND COMPUTE
C THE LCOP CONSTANTS.

NI - NPTS - 1
12 - Ni - I

C SET OE THE TRAINSFORB LOCP. THE OUTER LOOP
C SETS UP TB! COEFFIECIENTS WHILE THE INNER
C LOOP COMPUTES THE SON WHICH ARE THE
C COEFFICIENTS.

DO 200 J - *1NCOZP
ZIM(.b 1 : 0.0
Ira 1 2 1. 0
Do 0 N2
Io= I

12= 1 2
DELTA I*(SAMP(I0) 2. S 1AP(I1 4 S+AP(12))
ELTA, DELTA + (SIP( - SAAP (O)) S
10 I :T) = 1:A I, * DEiTA*CPHI JiI
IFSjO.2j = 13K J.2 + DELTA*SPHI ',1'

C REMOVE THE COLOR
Ira, (3, I IPA 1l / SORT 1+ FLOAT 3 *PI/18.) **2

200 CONTIIO

RETURN
END
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C
C
C
C * THE CDMT SUEROUTINE PERFORMS A DESCRETE MXLLIN *
C * TRANSFORM ON THE COMMON ARRA! WPM. THE FORMULA •
C * POR ONE MELLIN FREQUENCY VALUE IS:
C IFMi(I)=SUM(K= TO MPTS) (VMF(I+1)-WFM(I-1))*K**S •
C * *
C * THE COMPLEX COMPONENTS OF K**S ARE COMPUTED PRIOR *
C * TO CALLING CDMT AND STORED IN THE COMMON ARRArS *
C * CPHI AND SPHI AS REAL AND IMAGINARY PARTS •
C * RESPECTIVELY. THE CENTRAL DIFFERENCE IS USED. •
C *,***,****,*****,*******,****,• *******U****s***********
C
C

SUBROUTINE CDMT(H,SETS,NCOEF)
DIMENSION H NPTS),ID(5)
COMMON XFN(256o 21 CRHI(256,128) ,SPHI (256,128) ,PI,

lIXT 101 ,YT (10) .7
DATA ID/'C-IE 'LLIN%,' ERESP QUEN''CY I/
CALL TITLE (ID;

C SET UP DERIVATIVE OP INPUT VECTOR <H(I)>

C IDENTIFIED HERE AS <G>.

NG - NPTS - 1

DO 200 J .1 NCOEF

OMEGA = FLCAT(J) * PI / 18.

CC 100 I - 1,NG

IP1 = I + 2

DR = (H(IP1) - H(111)) / 2.

C COMPUTE THE J-TB COEFFICIENTS BY THE SO.

RIM 31 M 1 DR CPHI (,1)
X() M 2 + DR SPHI (JI)

100 CCNTINUE
C

COLOR = 1.
1PM - X, 1IP (,1 COLOR
XPAIM 1 ( ,2 =F 1 J (,2) COLOR

200 CONTINUE

RETURN
END
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C ** *******,*,**,** **,****,4, ,s ********* ****w*.*************
C * THIS SUBROUTINE USES SIMPSON'S RULE TO APPROXIMATE *
C * THE MODI IED MELLIN TRANSFORM. THE MODIFICATION
C * IS FREQUENCY TIMES THE EREQUENCY DERIVATIVE OF *
C * THE FFT.

C

SUBROUTINE SIMP(HNETSNCOE)
IMESION H NPTS (ID 5 2

CORKO NO M(6,2~ CP I2618,PI2618,l
IIXT 10 ,IYTAI0) k
DATA I Il,'-4  ILLIN',l ERE104QUENI'sC I/CALL IITLE (ID;

Ni = NPTS -1
N2 = NPTS - 2

DO 100 J=1,NCOEF
PSIMP = 2.0
CBEGA = PI * FLOAT(J) / 18.
COLOR - 1.

DC 200 I=l1N
IMl = I
10 = 1 + I

IFPSIMP .GT. 3.) GO-TC 67FSI P = 4.
GO TO 69

67 PSIMP = 2.
69 CONTINUE

DELTA = H(10) - H(IM)
XUN (,1) = PA J,) FSIMP DELTA * CPHI ,in

1P (,2 =1P (,2 +FSI! P *DELTA * SPHI (J191)

200 CONTINUE

100 CONTINUE
SRTURN
END
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C *THE 118 SUBIOUTINE TkKES T8 MAGNITUDE OF THlE
C *COMMON CONPLEX ARRAY UN2 F2 AND PLACES
C *THESE VALUES IN OUTPUT VICTOh iM6AG> FOR LATER
C * RINTING.*
C ***~**********************
C
C

SUBROUTINE XAB (IBAG,NPTS)
DIMENSION haAG (NPTS).CCMMON X1M 1256 2) C H(256,128) ,SPHI (256, 128) ,Pl,

lIXTj118) f!YT-Jlf,K
IMAGII) = QRT(XUM(I,1)**2+XPM(I,2Y**2)

100 CONT B HE
SET URN
END
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pC

C
C * THE STOW SUBROUTINE STORES THE INPUT ABRA PRT(NEPTS) *
C * INTO THE LOGICAL DEVICE 2 FOR LATER USE IN PLOTTING.
C * upLOT NUMBERS THE PLOTS FOR LATER IDENTIFICETION *
C * ~ND A PLOT TITLE FOR THE RELLIN FREQUENCY IS ADDED
C * FOR CONVENIENCE.
C * THE MODULUS OF THE S
C * TEANSIORM TAKEN SCALED TO UNIT MAGNITUDE, AND
C COUTPUT TO LOGICIL UNIT 2.
C * INPUT: PRT - TO BE SCALED TO 1 AND MRITTEN S
C * TO LOGICAL UNIT 2. *
C * NPLOT - THE NUMBER OF THE PLOT *
C • KEY - NUMBER OF CURVE THIS PLOT •C ******************************************************C

SUBROUTINE STOM (PRT,NPTS)
DIMENSICN PT NPTS)
COMMON XFB 4256,2), PHI (256,128) ,SPHI (256,128) ,PI,
lIT (10) *IYT (10) KEY

WRITE (3,13) SPTS
VRITE(3,13YKEY

CKK IF (KEY NE. 1)GO TO 12
C VRTIE AXIS LABELS

URITE3,10 IXT (I) .I1,10)
WRITE (3.10)-(UT (I),-1 10)

10 FORAT (10A4)l.
12 NELOT = NPLOT + 1

BERT = 0.0
13 FORMAT (I1)

DO 100 11,NPTS
IF5 4PETI .GT. BERT) BERT = PRT (I)

100 ccIsuT
IF IBPRT .LT. .00001) BERT = 1.
00 200 1=1 VPTS
ET(I1 a PAT(I) / BPRT-T= FtOAT(I
UITE 2A(32 PRT(I)

20 FORMA 61 31,f.)
200 CCNTINdE

RETURN
END
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C
C
C $*,**,****,**.***************************$*****
C * THE HOLD SUBROUTINE TAKES THE INPUT FILE *
C $ <FILIN> AND STORES IT I THE OUTPUT FILE *
C - <IILOUT> FOR TEMPORARY STORAGE. THE FILE $
C $ <PILIN> REMAINS UNCHANGED. *

CC

SUBROUTINE HOLD (FILIN,FILOUT, NPTS}

rIKEUSION FILIN (NPTS) FILOUT (INPTS)

DO 100 I 1,NPTS
FILOUT{I) FILIN (I)100 CGNTIN OE
RETURN
END

C

C * THE ALTER S-UBROUTINE WILL ALTER THE COhAON ARRAY *
C * <VFI> AS SPECIFIED BY THE IEPUT VARIABLES *
C * <SCALE> AND <SHIFT>. THE ALTERED VFM IS OUTPUT $
C * IN THE VECT:OR <ALT>. *
C
C
C

SUBROUTINE ALTER (ALI,VFH,SCALE,SHIFT NPTS)
DIMENSION AL 'NPTS IFBANPTS' TOLD 25 NEW (256)
CCANON XFA(256 2k.EHI(256,1 ),,SP I( 2*,28),PI,1IIXT 100) .I ITJlO ,KEY
DO0 10 -1I bPTS-
TOLD - fLOAT(I)
TMENJI) - TOLD(I) / SCALE + SHIFT

100 COT IU E
CALL INTP3 (UFNTOLD,ALT,TNEW,NPTS)
RETURN
END
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CC *.*.e.*.**.**, .**,*...*.* ..~e*.sse*.*..*.,..a.**.**...s
C * ZITP3 IS A SECOND ORDER INTERPOLATION BASED ON A *
C , ECLIJOMIAL EQUATING TO FIRST AND SECOND DERIVATIVES *
C • APPROXIBATED BY CENTRAL DIFFERENCES. THE INPUT *
C * VECTOR <1O> HAS OLD SAMLES AT TIMES IN <TO>. THE *
C * 3E SAMPLE TIMES ARE INPUT THROUGH ARRAY <TN> AND *
C * THE COMEUTED SAMPLES AT THESE TIMES ARE OUTPUT IN *
C • ARE OUTPUT IN THE VECTOR <IN> AND <WFM>. *C ************************************,*********,***********s~ss

C
SUBROUTINE INTP3 x TO IN T3 NPTS)
DIMENSION 1313) Xo f § I ATS) IN P NPT
COMMON 1PM4(,6,l, ,PHI(W6,J1).Sh (256,A)Pil
lIXT (10) ,IYT (10) ,AET

CC
C CHOSE THE <TO> SAMPLE TIME CLOSES TO THE WARPED
C TIME HELD IN <TN>
C

CC 60 I=1,NPTS
DT = 100
XPTS = FLOAT NPTS)
IF(ITN(I GE.}1" .AND. (TN(I) .LE. XPTS)) GO TO 5
1I) .0
GO TO 60

5 O 10 3=1 NPTS
DABS = AAS (DT)
£IST = TO(J). - TN(I)
DIST ABS(DIST
IF (DTABS .LT. DIST) GO TO 25
DT = TNJI) - TO(J)

10 CCNTINIUJ
25 JTINE - 1

J1 = -1
DO 30 J-1 3
J1 = 3 + STIME-1
IF J(JI GE 1) .AND. (3l .LE. NPTS))GO To 29
GO T3

29 13(Jl = (XO{1)
30 CC TINUE

TIMM = TN
IMO = TO gi I HE)

X (I) = FC (Z3,TIMO,TIMN)60 CO iTI NUB
CO ;00 1I,1NPTS

500 CONTINUE
BETURN
END
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C
C
C ICN IS THE INTERPOLITZON ROLE.
C

FUNCTION FCNLXTO*TN)
DIffESION 1(3)C

C COMPUTE THE COEFFICIENTS.C

cm
c -I+Tm2 -B *, TO

C
C COMPUTE THE INTERPOLATED VALUE.
C

FCN - A * (TN**2) + B TN + CBETURN

END
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C
C *********************,****************************
C * THIS SUBROUTINE IS THE RESULT OF A CLOSED *
C * FORB CALCULATION OF THE CONTINUOUS SINC**2 *
C EEING TAKEN FROM THE TIME DOMAIN THROUGH THE *
C * ENTIRE POUBIER-ELLIN PSOCESSING. THE ALGORITHM
C IS USED TO VERIFY THE FDR PROCESS. THE OUTPUT
C * FEATURE SPACE SHOULD BE IDENTICLE TO THAT PRODUCED S
C BY ANY OF THE MELLIN ALGORITHMS. FOR THIS REASON *
C * THE SAMPLE POINTS ABE SYNCHRONIZED WITH THOSE USED *
C ABOVE. <NCOEF> FN COEFNICIZENTS ARE USED. THE *
C * CCANON VARIABLE <KEY> MUST BE SET TO 99 PRIOR TO
C * CALLING TO GET THE SINCO*2 OUTPUT FEATURE SPACE. *
C * TO OUTPUT THE CLOSED ?ORB SOLUTION FOR A RAMP IN *
C * THE FREQUENCY DOMAIN <KEY> BUST EQUAL 100. *
C
C
C

SUBROUTINE CFORM (C¥,NCOEp)

DIMENSION Cz (NCOEF)

CCMON XP(256,2),CPHI(256,128),SPHI(256,128),PI,
1IIT(10) ,I'T (10) ,KEY

IP(KEY .EQ. 100) GO TO 200
IF(KEY .NE.99) RETUBN
DO 100 M=1,NCOEF

B = PLOAT(M) -1.0
HBAG 1, + (PI EM / 18)**2
Cl (flx;E=SQi (HMAG) /HBAG

100 CO TI OU
GC TO 101

200 DO 202 I - 1 NCOEF
I = PLOAT(II -1.0

OMEGA = PI * II / 18.
CP(I} = 2./SQRT( . + ONEGA**2)

202 COTINUE
101 CONTINUE

BEAD (2.20) KEY
RA A(2.10 XT (I) I=1 10)
READ2 210 ITT (1) 91-110)

10 FORN! (T 10).
20 FOERAT (14)

CALL STOW (CFNCOEF)

BETURN
END
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C
C * TITLE TITLES THE T AXIS FOR THE PLOTTING *
C * iROGSEA ACCORDING TO THE ALGORITHM USED TO S
C * GENERATE THE FEATURE SPACE. *

SUBROUTINE TITLE (ID)
DIMENSION IID5)
COMMON rfH(256, 2CHI(256,128) ,SPHI (256,128) .PI,
IIXT1I) IT 10),%EYDo 100 Ili 'At=4I 16(lITT(I)= I (I)

100 CONI E
BETURN
END
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